Precession Electron Diffraction Assisted Orientation Mapping in the Transmission Electron Microscope (original) (raw)

Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction

Zeitschrift Fur Kristallographie, 2010

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope is described. It is primarily based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. Precession electron diffraction patterns are especially useful for this purpose. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any older or newer mid-voltage transmission electron microscope (TEM). Experimentally obtained crystal phase and orientation maps are shown for a variety of samples. Comprehensive commercial and open-access crystallographic databases may be used in support of the nanocrystal phase identification process and are briefly mentioned.

Precession electron diffraction & automated crystallite orientation/phase mapping in a transmission electron microscope

The basics of precession electron diffraction (PED) in a transmission electron microscope (TEM) are briefly discussed. An automated system for the mapping of nanocrystal phases and orientations in a TEM is briefly described. This system is primarily based on the projected reciprocal lattice geometry as extracted from experimental precession electron diffraction spot patterns. Comprehensive open-access crystallographic databases may be used in support of the automated crystallite phase identification process and are, therefore, also briefly mentioned.

Precession electron diffraction & automated crystallite orientation/phase mapping in a transmission electron microscope

2011 11th IEEE International Conference on Nanotechnology, 2011

The basics of precession electron diffraction (PED) in a transmission electron microscope (TEM) are briefly discussed. An automated system for the mapping of nanocrystal phases and orientations in a TEM is briefly described. This system is primarily based on the projected reciprocal lattice geometry as extracted from experimental precession electron diffraction spot patterns. Comprehensive open-access crystallographic databases may be used in support of the automated crystallite phase identification process and are, therefore, also briefly mentioned.

Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results

Journal of Microscopy, 2013

A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples.

Automated Crystallite Orientation and Phase Mapping in a Transmission Electron Microscope

MRS Proceedings, 2011

ABSTRACTAn automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is briefly described. It is primarily based on the projected reciprocal lattice geometry that is extracted automatically from precession electron diffraction (PED) enhanced spot patterns. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older mid-voltage TEM. Comprehensive open-access crystallographic databases that may be used in support of this technique are mentioned.

Automated crystal phase and orientation mapping of nanocrystals in a transmission electron microscope

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is described. It is based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older TEM. The software that goes with this hardware is flexible in its intake of raw data so that it can also create orientation and phase maps of nanocrystal from high resolution TEM (HRTEM) images. When the nanocrystals possess a structure with a small to medium sized unit cell, e.g. noble metals or minerals that possess the halite structural prototype, an objective-lens aberration corrected microscope needs to be utilize for the recording of the HRTEM images that are to be processed by this software. Experimentally obtained crystal phase and orientation maps are shown for iron oxide and clausthalite nanocrystals. Comprehensive commercial and open-access crystallographic databases that may be used in support of the nanocrystal phase identification process are briefly mentioned.

Electron crystallography and dedicated electron-diffraction instrumentation

Acta Crystallographica Section E Crystallographic Communications

Electron diffraction (known also as ED, 3D ED or microED) is gaining momentum in science and industry. The application of electron diffraction in performing nano-crystallography on crystals smaller than 1 µm is a disruptive technology that is opening up fascinating new perspectives for a wide variety of compounds required in the fields of chemical, pharmaceutical and advanced materials research. Electron diffraction enables the characterization of solid compounds complementary to neutron, powder X-ray and single-crystal X-ray diffraction, as it has the unique capability to measure nanometre-sized crystals. The recent introduction of dedicated instrumentation to perform ED experiments is a key aspect of the continued growth and success of this technology. In addition to the ultra-high-speed hybrid-pixel detectors enabling ED data collection in continuous rotation mode, a high-precision goniometer and horizontal layout have been determined as essential features of an electron diffract...