Antibiotic Resistance in Humans and Animals (original) (raw)

Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications

Molecules, 2018

Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.

Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans

Seminars in Pediatric Infectious Diseases, 2004

Salmonella and Campylobacter infections occur commonly in children. Some of these infections are severe, requiring treatment with antimicrobial agents. Many classes of antimicrobial agents that are used in humans also are used in food animals for growth promotion, disease prevention, and therapy. The use of such antimicrobial agents in food animals increases the likelihood that human bacterial pathogens that have food animal reservoirs, such as Salmonella or Campylobacter, will develop cross-resistance to drugs approved for use in human medicine. Resistance determinants also may be transmitted from food animals to humans through the food supply with bacteria that usually are commensal, such as Escherichia coli and enterococci.

The risk of low concentrations of antibiotics in agriculture for resistance in human health care

FEMS Microbiology Letters, 2016

The contribution of antibiotic resistance originally selected for in the agricultural sector to resistance in human pathogens is not known exactly, but is unlikely to be negligible. It is estimated that 50% to 80% of all antibiotics used are applied in agriculture and the remainder for treating infections in humans. Since dosing regimens are less controlled in agriculture than in human health care, veterinary and environmental microbes are often exposed to sublethal levels of antibiotics. Exposure to sublethal drug concentrations must be considered a risk factor for de novo resistance, transfer of antimicrobial resistant (AMR) genes, and selection for already existing resistance. Resistant zoonotic agents and commensal strains carrying AMR genes reach the human population by a variety of routes, foodstuffs being only one of these. Based on the present knowledge, short treatments with the highest dose that does not cause unacceptable side-effects may be optimal for achieving therapeutic goals while minimizing development of resistance. Novel approaches such as combination or alternating therapy are promising, but need to be explored further before they can be implemented in daily practice.

Antibiotic resistAnce viA the food chAin: fact or fiction?

South African Journal of Science

The mechanisms that bacteria use to acquire additional genetic material, including genes coding for antibiotic resistance, are principally the secondary pathways that have been described as transformation and conjugation pathways. The farming industry often is reported as a hotspot for antibiotic-resistance reservoirs. In this review, we consider the exposure of food animals during the course of their lifespans to preventative, therapeutic or prophylactic treatment with antibiotic agents. In this context, zoonotic bacteria are commonly recognised as a potential threat to human health, with therapeutic treatment of pathogenic organisms on farms increasing the likelihood of selective antibiotic pressure influencing the commensal flora of the intestines. Existing literature indicates, however, that the effective impact on human health of such interventions in the food production process is still subject to debate.

Agriculture and food animals as a source of antimicrobial-resistant bacteria

Infection and drug resistance, 2015

One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resista...

Not All Antibiotic Use Practices in Food-Animal Agriculture Afford the Same Risk

Journal of Environment Quality, 2016

The World Health Organization has identified quinolones, thirdand fourth-generation cephalosporins, and macrolides as the most important antibiotics in human medicine. In the context of agricultural use of antibiotics, the principle zoonotic agents of concern are Salmonella enterica, Campylobacter spp., Escherichia coli, and Enterococcus spp. Antibiotic exposure provides a selective advantage to resistant strains of these bacteria relative to their susceptible conspecifics. This is a dose-dependent process, and consequently antibiotic use practices that involve higher doses will exert greater and longer-lasting selective pressure in favor of resistant bacterial populations and will therefore increase the probability of transmission to people and other animals. Oral administration has a greater impact on enteric flora with the exception of fluoroquinolone treatments, which appear to affect the enteric flora equally if administered orally or parenterally. The use of quinolones in agriculture deserves heightened scrutiny because of the ease with which these broad-spectrum antibiotics favor spontaneously resistant bacteria in exposed populations. When present at sufficient concentrations, excreted antibiotics have the potential to selectively favor resistant bacteria in the environment and increase the probability of transmission to people and animals. The bioavailability of antibiotics varies greatly: some antibiotics remain active in soils (florfenicol, b-lactams), whereas others may be rapidly sorbed and thus not bioavailable (tetracycline, macrolides, quinolones). When considering the risks of different antibiotic use practices in agriculture, it would be prudent to focus attention on practices that involve high doses, oral delivery, and residues of antibiotics that remain active in soils.

Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis

The Lancet Planetary Health, 2017

Background - Antibiotic use in human medicine, veterinary medicine, and agriculture has been linked to the rise of antibiotic resistance globally. We did a systematic review and meta-analysis to summarise the effect that interventions to reduce antibiotic use in food-producing animals have on the presence of antibiotic-resistant bacteria in animals and in humans. Methods - On July 14, 2016, we searched electronic databases (Agricola, AGRIS, BIOSIS Previews, CAB Abstracts, MEDLINE, Embase, Global Index Medicus, ProQuest Dissertations, Science Citation Index) and the grey literature. The search was updated on Jan 27, 2017. Inclusion criteria were original studies that reported on interventions to reduce antibiotic use in food-producing animals and compared presence of antibiotic-resistant bacteria between intervention and comparator groups in animals or in human beings. We extracted data from included studies and did meta-analyses using random effects models. The main outcome assessed was the risk difference in the proportion of antibiotic-resistant bacteria. Findings - A total of 181 studies met inclusion criteria. Of these, 179 (99%) described antibiotic resistance outcomes in animals, and 81 (45%) of these studies were included in the meta-analysis. 21 studies described antibiotic resistance outcomes in humans, and 13 (62%) of these studies were included in the meta-analysis. The pooled absolute risk reduction of the prevalence of antibiotic resistance in animals with interventions that restricted antibiotic use commonly ranged between 10 and 15% (total range 0–39), depending on the antibiotic class, sample type, and bacteria under assessment. Similarly, in the human studies, the pooled prevalence of antibiotic resistance reported was 24% lower in the intervention groups compared with control groups, with a stronger association seen for humans with direct contact with food-producing animals. Interpretation - Interventions that restrict antibiotic use in food-producing animals are associated with a reduction in the presence of antibiotic-resistant bacteria in these animals. A smaller body of evidence suggests a similar association in the studied human populations, particularly those with direct exposure to food-producing animals. The implications for the general human population are less clear, given the low number of studies. The overall findings have directly informed the development of WHO guidelines on the use of antibiotics in food-producing animals.