Connexins: a junctional crossroad to breast cancer (original) (raw)

Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression

Journal of Membrane Biology, 2007

The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.

Differential expression of connexin 43 in mouse mammary cells

Cell Biology International, 2006

In this study we have employed suppressive subtractive hybridization (SSH) analysis to investigate differential gene expression in primary mouse mammary epithelial cells (PMMEC) cultured under mildly apoptotic/quiescent and differentiating conditions. Among a small group of genes whose expression was differentially regulated was connexin 43. In vitro, connexin 43 mRNA and protein were detectable in PMMEC cultured under proliferative or mildly apoptotic conditions. The level of connexin 43 mRNA expression in vivo was also investigated. High levels of expression were found to be associated with the periods of greatest glandular plasticity (pubertal expansion of the mammary tree, early pregnancy and during early involution). Thus, terminally differentiated cells in vivo and in vitro did not express connexin 43 mRNA suggesting that connexin 43 expression, and perhaps facilitated gap junction communication, is associated with undifferentiated progenitor cell populations. Ó

Developmental Regulation of Gap Junctions and Their Role in Mammary Epithelial Cell Differentiation

Journal of Mammary Gland Biology and Neoplasia, 2000

Gap junctions play a critical role in the development and differentiation of many tissues. Formed by the joining of two connexons on opposing membranes of two cells, gap junctions permit passage of ions and small molecules. Six connexins (Cx) belonging to a family of closely related tetraspan transmembrane proteins form a connexon. Connexin expression peaks in lactation, and those identified in the gland, thus far, are Cx26, Cx30, Cx32, and Cx43. Cx43 associates with myoepithelial cells, while others associate with epithelial and ductular cells. In vitro, assembly of functional gap junctions appears to be essential for differentiation of mammary epithelial cells. However, the role of gap junction intercellular communication (GJIC) in differentiation and growth remains unclear. Recent evidence challenges the view that gap junctions are simply pore-forming proteins and suggests that cell adhesion-associated proteins interact with the cytosolic carboxy-terminus of connexins and participate in signaling events. The possible implications on mammary cell function are discussed.

Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis

Cell and Tissue Research, 2005

The mammary gland reaches a fully differentiated phenotype at lactation, a stage characterized by the abundant expression of β-casein. We have investigated the expression and regulation of gap junction proteins (connexins, Cx) during the various developmental stages of mouse mammary gland. Immunohistochemical analysis, with specific antibodies, reveals that Cx26 and Cx32 are expressed and confined to the cell borders of luminal epithelial cells in all developmental stages of the gland. Cx26 and Cx32 expression, at the mRNA and protein levels, increases in pregnancy and peaks in lactation. Whereas Cx43 mRNA decreases in pregnancy and lactation, the functional activity of Cx43 protein, which has been localized to myoepithelial cells, is regulated (through phosphorylation) during pregnancy and peaks during lactation. Cx30 mRNA and proteins have, for the first time, been detected in mammary gland epithelia. Using reverse transcription/polymerase chain reaction and sequencing techniques, we show that Cx30 is abundant in pregnant and lactating mammary gland. Cx30 protein levels have not been detected in the mammary gland prior to day 15 of pregnancy, whereas maximum expression occurs at the onset of lactation. In mouse mammary cells in culture, Cx30 is epithelial-cell-specific and is induced by lactogenic hormones. These data identify a novel player in mammary differentiation and suggest a potential role for Cx30 in the fully differentiated gland.

Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

Breast cancer research : BCR, 2005

Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compare...

Connexins in cancer: bridging the gap to the clinic

Oncogene, 2019

Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and-independent functions that are tissue and stage specific. This can elicit both pro-and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.

Altered permeability and modulatory character of connexin channels during mammary gland development

Experimental Cell Research, 2004

Abrupt developmental changes occur in structural form and function of connexin (Cx) channels in the mouse mammary gland. Microarray study shows that the principal connexin isoform in epithelial cells during pregnancy is Cx26, up-regulated and persisting from the virgin. After parturition, there is rapid induction of Cx32. In epithelial plasma membranes, size exclusion chromatography reveals that Cx32 organizes initially with Cx26 as heteromeric (Cx26-Cx32) hemichannels and later in heteromeric and homomeric Cx32 channels. Dramatic alterations of connexin channel function following these developmental changes in channel composition are characterized using native channels reconstituted into liposomes. Changes to channel stoichiometry increase the allowable physical size limits of permeant after parturition; the new Cx32 channels are wider than channels containing Cx26. Most remarkably, heteromeric Cx26-Cx32 channels are selectively permeability to adenosine 3V,5V cyclic phosphate (cAMP), guanosine 3V,5V cyclic phosphate (cGMP), and inositol 1,4,5triphosphate (IP 3), whereas homomeric channels are not. Homomeric Cx26 and heteromeric channels with high Cx26/Cx32 stoichiometry are also inhibited by taurine, an osmolyte playing a key role in milk protein synthesis. Taurine effect is reduced where heteromeric channels contain Cx32 > Cx26 and eliminated when channels contain only Cx32. Connexin channel stoichiometry, permeability, and chemical gating character change in precisely the desired fashion after parturition to maximize molecular and electrical coupling to support coordinated milk secretion.

Role of connexin (gap junction) genes in cell growth control and carcinogenesis

Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 1999

Evidence is accumulating that connexin (Cx) genes form a family of tumor-suppressor genes. Our long-standing study revealed that, in almost all tumors, some abnormality in gap junction is observed, including loss or reduction of expression, aberrant localization of gap junction. In this study, we have examined the dominant-negative effects of mutant (prepared by site-directed mutagenesis) Cx43 constructs in C6 glioma cells, and of mutant Cx26 constructs in HeLa cells, on tumorigenicity. The mutant Cx43 A253V (Ala 253 to Val) inhibited the tumor-suppressive function exerted by wild-type Cx43 in C6 cells. Similarly, the mutant Cx26 P87L (Pro 87 to Leu) manifested dominant-negative inhibition of connexin-mediated cell growth control in HeLa cells. These results suggest that mutations of connexin genes can affect the tumor-suppressive function of gap junction and that gap junctional intercellular communication can be regulated by not only non-genotoxic but also genotoxic activities of environmental carcinogens.

Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development

Developmental Biology, 2016

Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (prepubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1,-3,-4,-7) and adherens (β-catenin, E-and P-cadherins) junctions throughout development. Interestingly, coimmunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.