Proton-driven plasma wakefield acceleration in AWAKE (original) (raw)

AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ∼ 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (∼ 15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

The AWAKE Proton-driven Plasma Wakefield Acceleration Experiment at CERN

2012

It is the aim of the AWAKE project at CERN to demonstrate the acceleration of electrons in the wake created by a proton beam passing through plasma. The proton beam will be modulated as a result of the transverse two-stream instability into a series of micro bunches that will then drive strong wakefields. The wakefields will then be used to accelerate electrons with GV/m strength fields. The AWAKE experiment is currently being commissioned and first data taking is expected this year. The status of the experimental program is described as well as first thoughts on future steps.

AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

Nuclear and Particle Physics Proceedings, 2016

The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter microbunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders.

AWAKE, A Particle-driven Plasma Wakefield Acceleration Experiment

arXiv: Accelerator Physics, 2017

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (r.m.s ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV.

Proton-driven plasma wakefield acceleration: A path to the future of high-energy particle physics

2014

New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN-the AWAKE experiment-has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

Acceleration of electrons in the plasma wakefield of a proton bunch

Nature

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration 1-5 , in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse 6-9 or electron bunch 10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies 5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage 13. Long, thin proton bunches can be used because they undergo a process called self-modulation 14-16 , a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN 17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage 20 means that our results are an important step towards the development of future high-energy particle accelerators 21,22. The layout of the AWAKE experiment is shown in Fig. 1. A proton bunch from CERN's Super Proton Synchrotron (SPS) accelerator co-propagates with a laser pulse (green), which creates a plasma (yellow) in a column of rubidium vapour (pink) and seeds the

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

Journal of Plasma Physics, 2012

The proton bunch-driven plasma wakefield acceleration (PWFA) has been proposed as an approach to accelerate an electron beam to the TeV energy regime in a single plasma section. An experimental program has been recently proposed to demonstrate the capability of proton-driven PWFA by using existing proton beams from the European Organization for Nuclear Research (CERN) accelerator complex. At present, a spare Super Proton Synchrotron (SPS) tunnel, having a length of 600 m, could be used for this purpose. The layout of the experiment is introduced. Particle-in-cell simulation results based on realistic SPS beam parameters are presented. Simulations show that working in a self-modulation regime, the wakefield driven by an SPS beam can accelerate an externally injected ~10 MeV electrons to ~2 GeV in a 10-m plasma, with a plasma density of 7 × 1014 cm−3.

Preliminary Study of Proton Driven Plasma Wakefield Acceleration

The idea of proton bunch driven plasma wakefield acceleration was recently proposed. The motivation is to use an existing high energy proton beam to drive a large amplitude electric field, and then accelerate a trailing electron bunch to energies beyond 500 GeV. Simulation results of the plasma wakefield production and acceleration process using a hybrid PIC code are given in this paper. In order to get a high accelerating field, the proton bunches have to be extremely small. A preliminary investigation on the production of short proton bunches is also presented.

Update of Proton Driven Plasma Wakefield Acceleration

2010

In this paper, the update of proton driven plasma wakefield acceleration (PDPWA) is given. After a brief introduction to the scheme of PDPWA, a future demonstration experiment is discussed. The particle-in-cell simulation results based on the realistic proton beams from the CERN Super Proton Synchrotron (SPS) are presented, followed by a simulation study of proton bunch compression.

JACoW : Beam Instrumentation Developments for the Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

2017

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN aims to develop a proof-of-principle electron accelerator based on proton driven plasma wake-field acceleration. The core of AWAKE is a 10 metre long plasma cell filled with Rubidium vapour in which single, 400 GeV, proton bunches extracted from the CERN Super Proton Synchrotron (SPS) generate a strong plasma wakefield. The plasma is seeded using a femtosecond pulsed Ti:Sapphire laser. The aim of the experiment is to inject low energy electrons onto the plasma wake and accelerate them over this short distance to an energy of several GeV. To achieve its commissioning goals, AWAKE requires the precise measurement of the position and transverse profile of the laser, proton and electron beams as well as their temporal synchronisation. This contribution will present the beam instrumentation systems designed for AWAKE and their performance during the 2016 proton beam commissioning period.