Sox2 and Sox3 are essential for development and regeneration of the zebrafish lateral line (original) (raw)

ABSTRACTThe recovery of injured or lost sensory neurons after trauma, disease or aging is a major scientific challenge. Upon hearing loss or balance disorder, regeneration of mechanosensory hair cells has been observed in fish, some amphibians and under special circumstances in birds, but is absent in adult mammals. In aquatic vertebrates, hair cells are not only present in the inner ear but also in neuromasts of the lateral line system. The zebrafish lateral line neuromast has an almost unlimited capacity to regenerate hair cells. This remarkable ability is possible due to the presence of neural stem/progenitor cells within neuromasts. In order to further characterize these stem cells, we use the expression of the neural progenitor markers Sox2 and Sox3, transgenic reporter lines, and morphological and topological analysis of the different cell types within the neuromast. We reveal new sub-populations of supporting cells, the sustentacular supporting cells and the neuromast stem ce...