Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon (original) (raw)

Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

Atmospheric Chemistry and Physics, 2007

We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a towerbased surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m −2 h −1 for isoprene, 0.20 mg C m −2 h −1 for αpinene, and 0.39 mg C m −2 h −1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM).

Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia

Atmospheric Environment, 2000

According to recent assessments, tropical woodlands contribute about half of all global natural non-methane volatile organic compound (VOC) emissions. Large uncertainties exist especially about #uxes of compounds other than isoprene and monoterpenes. During the Large-Scale Biosphere/Atmosphere Experiment in Amazonia } Cooperative LBA Airborne Regional Experiment 1998 (LBA-CLAIRE-98) campaign, we measured the atmospheric mixing ratios of di!erent species of VOC at a ground station at Balbina, Amazonia. The station was located 100 km north of Manaus, SE of the Balbina reservoir, with 200}1000 km of pristine forest in the prevailing wind directions. Sampling methods included DNPH-coated cartridges for carbonyls and cartridges "lled with graphitic carbons of di!erent surface characteristics for other VOCs. The most prominent VOC species present in air were formaldehyde and isoprene, each up to several ppb. Concentrations of methylvinyl ketone as well as methacroleine, both oxidation products of isoprene, were relatively low, indicating a very low oxidation capacity in the lower atmospheric boundary layer, which is in agreement with a daily ozone maximum of (20 ppb. Total monoterpene concentration was below 1 ppb. We detected only very low amounts of VOC species, such as benzene, deriving exclusively from anthropogenic sources.

Biomass burning emission disturbances of isoprene oxidation in a tropical forest

Atmospheric Chemistry and Physics

We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gas measurements carried out during the South AMerican Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO), nitrogen oxides (NO x), ozone (O 3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene hydroxy hydroperoxide (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK + MACR + ISOPOOH] / [isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO < 150 ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O 3 ] / [CO]), to evaluate the impact of biomass burning emissions on the oxidative capacity of the Amazon forest atmosphere.

Biomass burning emissions disturbances on the isoprene oxidation in a tropical forest

We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gases measurements carried out during the South American Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO) and nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and hydroxyhydroperoxides (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK+MACR+ ISOPOOH]/[Isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO<150 ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O3]/[CO]), to evaluate the impact of biomass burning emissions in the oxidative capacity of the Amazon forest atmosphere. We observed that biomass burning emissions disturb the isoprene oxidation reactions, especially for fresh plumes ([MVK+MACR+ISOPOOH]/[isoprene] = 7). The oxidation of isoprene is higher in fresh smoke plumes at lower altitudes (~ 500 m) than in aged smoke plumes, anticipating near the surface a complex chain of oxidation reactions, which may be related to the secondary organic aerosols (SOA) formation. We proposed a refinement of the OH calculation based on the sequential reaction model, which considers vertical and horizontal transport for both biomass burning regimes and background environment. Our approach for the [OH] estimation resulted in values of the same order of magnitude of a recent observation in the Amazon rainforest [OH] ≅ 10 6 (molecules cm-3). During the fresh Atmos. Chem. Phys. Discuss.,

The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

Atmospheric Chemistry and Physics, 2007

Volatile Organic Compound (VOC) emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS), Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography (GC) coupled to PTRMS (GC-PTR-MS). We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service) Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC) (OVOC/NMHC ∼4:1, NMHC: nonmethane hydrocarbons) The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H 3 O + ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min) and aged (>1 h-1 d) smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer) are presented. 1996); tropical forest -SCAR-B . Later

Diel and seasonal changes of Biogenic Volatile Organic Compounds within and above an Amazonian rainforest site

The Amazonian rainforest is a large tropical ecosystem, which is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of biogenic volatile organic compounds (BVOCs) in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO) site, located in central Amazonia. A quadrupole proton-transfer-reaction mass spectrometer (PTR-MS), with seven ambient air inlets, positioned from near ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor), was deployed for BVOC monitoring. We report diel and seasonal (February-March 2013 as wet season and September 2013 as dry season) ambient mixing ratios for isoprene, monoterpenes, isoprene oxidation products, acetaldehyde, acetone, methyl ethyl ketone (MEK), methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed during the wet season (February-March 2013), with the peak in solar irradiation at 12:00 LT (local time) and during the dry season (September 2013) with the peak in temperature at 16:00 LT. Isoprene and monoterpene mixing ratios were the highest within the canopy with a median of 7.6 and 1 ppb, respectively (interquartile range (IQR) of 6.1 and 0.38 ppb) during the dry season (at 24 m, from 12:00 to 15:00 LT). The increased contribution of oxygenated volatile organic compounds (OVOCs) above the canopy indicated a transition from dominating forest emissions during the wet season (when mixing ratios were higher than within the canopy), to a blend of biogenic emission, photochemical production and advection during the dry season when mixing ratios were higher above the canopy. Our observations suggest strong seasonal interactions between environmental (insolation, temperature) and biological (phenology) drivers of leaf BVOC emissions and atmospheric chemistry. Considerable differences in the magnitude of BVOC mixing ratios, as compared to other reports of Amazonian BVOC, demonstrate the need for long-term observations at different sites and more standardized measurement procedures, in order to better characterize the natural exchange of BVOCs between the Amazonian rainforest and the atmosphere.

Biogenic VOC emissions from forested Amazonian landscapes

Global Change Biology, 2004

A tethered balloon-sampling platform was used to study biogenic volatile organic compounds (BVOCs) in the atmospheric boundary layer in three distinct moist tropical forest ecoregions, as well as an extensive pasture area, in Amazonia. Approximately 24-40 soundings, including as many as four VOC samples collected simultaneously at various altitudes, were made at each site. Concentrations in the mixed layer increased during morning hours and were relatively constant midday through afternoon. Since most important meteorological and chemical parameters were very similar among the sites during the measurement periods, a BVOC canopy emission model was used with a model of the chemistry of the boundary layer to reproduce the atmospheric concentrations observed. The simulations indicated significantly different midday landscape isoprene and a-pinene emission rates for the three forest ecoregions (2200, 5300, 9800 lg m À2 h À1 isoprene and 90, 120, and 180 lg m À2 h À1 a-pinene for the three moist forest ecoregions studied, respectively). The differences in emissions among the ecoregions may be attributed to the species composition, which were markedly different and in which the percentage of isoprene and terpene emitting species also differed significantly.

Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation

Journal of Geophysical Research, 2004

1] Disjunct eddy covariance in conjunction with continuous in-canopy gradient measurements allowed for the first time to quantify the fine-scale source and sink distribution of some of the most abundant biogenic (isoprene, monoterpenes, methanol, acetaldehyde, and acetone) and photooxidized (MVK+MAC, acetone, acetaldehyde, acetic, and formic acid) VOCs in an old growth tropical rain forest. Our measurements revealed substantial isoprene emissions (up to 2.50 mg m À2 h À1 ) and light-dependent monoterpene emissions (up to 0.33 mg m À2 h À1 ) at the peak of the dry season (April and May 2003). Oxygenated species such as methanol, acetone, and acetaldehyde were typically emitted during daytime with net fluxes up to 0.50, 0.36, and 0.20 mg m À2 h À1 , respectively. When generalized for tropical rain forests, these fluxes would add up to a total emission of 36, 16, 19, 106, and 7.2 Tg/yr for methanol, acetaldehyde, acetone, isoprene, and monoterpenes, respectively. During nighttime we observed strong sinks for oxygenated and nitrogen-containing compounds such as methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile with deposition velocities close to the aerodynamic limit. This suggests that the canopy resistance (R c ) is very small and not the rate-limiting step for the nighttime deposition of many VOCs. Our measured mean dry deposition velocities of methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile were a factor 10-20 higher than estimated from traditional deposition models. If our measurements are generalized, this could have important implications for the redistribution of VOCs in atmospheric chemistry models. Our observations indicate that the current understanding of reactive carbon exchange can only be seen as a first-order approximation. (2004), Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation, J. Geophys.

Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)

Atmospheric Chemistry and Physics, 2018

Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O 3) and nitrate radicals (NO 3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter-and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.

Monoterpene chemical speciation in the Amazon tropical rainforest: variation with season, height, and time of day at the Amazon Tall Tower Observatory (ATTO)

Atmospheric Chemistry and Physics Discussions, 2017

Speciated monoterpene measurements in the Amazon rainforest air are scarce, but important in order to understand their contribution to the overall reactivity of volatile organic compound (VOCs) emissions towards the main atmospheric oxidants, such as hydroxyl radical (OH), ozone (O<sub>3</sub>) and nitrate radical (NO<sub>3</sub>). In this study, we present the chemical speciation of gas phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automatic sampling systems positioned on a tower at 12 and 24 m height and analysed using Gas Chromatography Flame Ionization Detection (GC-FID). The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using Proton-Transfer...