Bacterial Secretion Systems: An Overview (original) (raw)

A Review of Secretion Systems in Pathogenic and Non-Pathogenic Bacteria

Biosciences, Biotechnology Research Asia, 2016

Secretion is an essential duty for prokaryotes to better interact with their surroundings or host. In particular, the production of extracellular proteins and peptides is important in many aspects of survival and organism adaptation to its ecological niche. Secretion systems in bacteria are multi component protein structures used to transport molecules across bacterial membranes. Secretion systems are usually classified into 7 groups: Type I, II, III, IV, V, VI, VI and chaperons navigating the pathways are also a part of the system. Since this systems can transport a variety of different pathogenic factors outside of the bacterial cell and establish the ability to communicate with the environment in which the bacteria live. This is important about the human pathogenic bacteria because by understanding the components and functions of these protein transport systems, we can find the right solution to deal with them. Furthermore, these systems can be used for biological fights.

Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions

Frontiers in cellular and infection microbiology, 2017

Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effect...

SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems

Scientific reports, 2017

Bacteria translocate effector molecules to host cells through highly evolved secretion systems. By definition, the function of these effector proteins is to manipulate host cell biology and the sequence, structural and functional annotations of these effector proteins will provide a better understanding of how bacterial secretion systems promote bacterial survival and virulence. Here we developed a knowledgebase, termed SecretEPDB (Bacterial Secreted Effector Protein DataBase), for effector proteins of type III secretion system (T3SS), type IV secretion system (T4SS) and type VI secretion system (T6SS). SecretEPDB provides enriched annotations of the aforementioned three classes of effector proteins by manually extracting and integrating structural and functional information from currently available databases and the literature. The database is conservative and strictly curated to ensure that every effector protein entry is supported by experimental evidence that demonstrates it is ...

Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins

Molecular Microbiology, 2001

A collection of large virulence exoproteins, including Ca 21 -independent cytolysins, an iron acquisition protein and several adhesins, are secreted by the two-partner secretion (TPS) pathway in various Gramnegative bacteria. The hallmarks of the TPS pathway are the presence of an N-proximal module called thè secretion domain' in the exoproteins that we have named the TpsA family, and the channel-forming bbarrel transporter proteins we refer to as the TpsB family. The genes for cognate exoprotein and transporter protein are usually organized in an operon. Specific secretion signals are present in a highly conserved region of the secretion domain of TpsAs. TpsBs probably serve as specific receptors of the TpsA secretion signals and as channels for the translocation of the exoproteins across the outer membrane. A subfamily of transporters also mediates activation of their cognate cytolysins upon secretion. The exoproteins are synthesized as precursors with an N-terminal cleavable signal peptide, and a subset of them carries an extended signal peptide of unknown function. According to our current model, the exoproteins are probably translocated across the cytoplasmic membrane in a Sec-dependent fashion, and their signal peptide is probably processed by a LepB-type signal peptidase. The N-proximal secretion domain directs the exoproteins towards their transporters early, so that translocation across both membranes is coupled. The exoproteins transit through the periplasm in an extended conformation and fold progressively at the cell surface before eventually being released into the extracellular milieu. Several adhesins also undergo extensive proteolytic processing upon secretion. The genes of many new TpsAs and TpsBs are found in recently sequenced genomes, suggesting that the TPS pathway is widespread.

Bacterial Virulence Factors: Secreted for Survival

Indian Journal of Microbiology, 2016

Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.

Protein secretion in Gram-negative bacteria: Transport across the outer membrane involves common mechanisms in different bacteria

The EMBO Journal

The xcp genes are required for protein secretion by Pseudomonas aeruginosa. They are involved in the second step of the process, i.e. the translocation across the outer membrane, after the exoproteins have reached the periplasm in a signal peptide dependent fashion. The nucleotide sequence of a 2.5 kb DNA fragment containing xcp genes showed at least two complete open reading frames, potentially encoding proteins with molecular weights of 41 and 19 kd. Products with these apparent molecular weights were identified after expression of the DNA fragment in vitro and in vivo. Subcloning and complementation experiments showed that both proteins are required for secretion. The two products are located in the inner membrane and share highly significant homologies with the PulL and PulM proteins which are required for the specific secretion of pullulanase in Kebsiella pneumoniae. These homologies reveal the existence of a common mechanism for protein secretion in Pseudomonas aeruginosa and KlebsieUla pneumoniae.