RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons (original) (raw)

ESEfinder: a web resource to identify exonic splicing enhancers

Nucleic Acids Research, 2003

Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder (http://exon.cshl.edu/ESE/) is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.

Single Nucleotide Polymorphism–Based Validation of Exonic Splicing Enhancers

PLoS Biology, 2004

Because deleterious alleles arising from mutation are filtered by natural selection, mutations that create such alleles will be underrepresented in the set of common genetic variation existing in a population at any given time. Here, we describe an approach based on this idea called VERIFY (variant elimination reinforces functionality), which can be used to assess the extent of natural selection acting on an oligonucleotide motif or set of motifs predicted to have biological activity. As an application of this approach, we analyzed a set of 238 hexanucleotides previously predicted to have exonic splicing enhancer (ESE) activity in human exons using the relative enhancer and silencer classification by unanimous enrichment (RESCUE)-ESE method. Aligning the single nucleotide polymorphisms (SNPs) from the public human SNP database to the chimpanzee genome allowed inference of the direction of the mutations that created present-day SNPs. Analyzing the set of SNPs that overlap RESCUE-ESE hexamers, we conclude that nearly one-fifth of the mutations that disrupt predicted ESEs have been eliminated by natural selection (odds ratio = 0.82 6 0.05). This selection is strongest for the predicted ESEs that are located near splice sites. Our results demonstrate a novel approach for quantifying the extent of natural selection acting on candidate functional motifs and also suggest certain features of mutations/SNPs, such as proximity to the splice site and disruption or alteration of predicted ESEs, that should be useful in identifying variants that might cause a biological phenotype.

Genomic features defining exonic variants that modulate splicing

Genome Biology, 2010

Background: Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative. Results: We assessed the features of single-nucleotide genomic variants verified to cause exon skipping and compared them to a large set of coding SNPs common in the human population, which are likely to have no effect on splicing. Our findings implicate a number of features important for their ability to discriminate spliceaffecting variants, including the naturally occurring density of exonic splicing enhancers and exonic splicing silencers of the exon and intronic environment, extensive changes in the number of predicted exonic splicing enhancers and exonic splicing silencers, proximity to the splice junctions and evolutionary constraint of the region surrounding the variant. By extending this approach to additional datasets, we also identified relevant features of variants that cause increased exon inclusion and ectopic splice site activation. Conclusions: We identified a number of features that have statistically significant representation among exonic variants that modulate splicing. These analyses highlight putative mechanisms responsible for splicing outcome and emphasize the role of features important for exon definition. We developed a web-tool, Skippy, to score coding variants for these relevant splice-modulating features.

Identification and analysis of alternative splicing events conserved in human and mouse

Proceedings of the National Academy of Sciences, 2005

Alternative pre-mRNA splicing affects a majority of human genes and plays important roles in development and disease. Alternative splicing (AS) events conserved since the divergence of human and mouse are likely of primary biological importance, but relatively few of such events are known. Here we describe sequence features that distinguish exons subject to evolutionarily conserved AS, which we call alternative conserved exons (ACEs), from other orthologous human/mouse exons and integrate these features into an exon classification algorithm, acescan . Genome-wide analysis of annotated orthologous human–mouse exon pairs identified ≈2,000 predicted ACEs. Alternative splicing was verified in both human and mouse tissues by using an RT-PCR-sequencing protocol for 21 of 30 (70%) predicted ACEs tested, supporting the validity of a majority of acescan predictions. By contrast, AS was observed in mouse tissues for only 2 of 15 (13%) tested exons that had EST or cDNA evidence of AS in human ...

Comparative Analysis Identifies Exonic Splicing Regulatory Sequences—The Complex Definition of Enhancers and Silencers

Molecular Cell, 2006

Exonic splicing regulatory sequences (ESRs) are cisacting factor binding sites that regulate constitutive and alternative splicing. A computational method based on the conservation level of wobble positions and the overabundance of sequence motifs between 46,103 human and mouse orthologous exons was developed, identifying 285 putative ESRs. Alternatively spliced exons that are either short in length or contain weak splice sites show the highest conservation level of those ESRs, especially toward the edges of exons. ESRs that are abundant in those subgroups show a different distribution between constitutively and alternatively spliced exons. Representatives of these ESRs and two SR protein binding sites were shown, experimentally, to display variable regulatory effects on alternative splicing, depending on their relative locations in the exon. This finding signifies the delicate positional effect of ESRs on alternative splicing regulation.

Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues

F1000Research, 2013

Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina’s Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed (‘switched’) between two tissues, while 30-45% showed little variation, and the rema...

Analysis of Exon Skipping Events in Human and Mouse

Comparison of human and mouse genomics revealed a similar long range sequences organization, and many genes that are orthologous between human and mouse. Alternative splicing is a very important post-transcriptional event leading to an increase in the transcriptome diversity. Recently, genomics studies estimate that 40-60% of human genes undergo alternative splicing. It is interesting to appraise the level of conservation of alternative splicing. To address this question, we developed a bioinformatics method to identify alternative splicing events that are conserved and alternative splicing events that are not conserved between human and mouse. Here we report an analysis of 3,613 orthologous genes in human and mouse, which discover 2,628 alternative splicing events are conserved in both transcriptome and 2,783 alternative splicing events are not conserved. Further classification of these conserved alternative splicing events reveals that 239 events are due to exon skipping, 34 event...

Exon expression QTL (eeQTL) analysis highlights distant genomic variations associated with splicing regulation

Quantitative Biology, 2014

Alternative splicing is a ubiquitous mechanism of post-transcriptional regulation of gene expression and produces multiple isoforms from the same genes. Expression quantitative trait loci (eQTL) has been a major method for finding associations between gene expression and genomic variations. Differences in alternative splicing isoforms are resulted from differences in the expression of exons. We propose to use exon expression QTL (eeQTL) to study the genomic variations that are associated with splicing regulation. A stringent criterion was adopted to study gene-level eQTLs and exon-level eeQTLs for both cisand transfactors. From experiments on an RNA-sequencing (RNA-Seq) data set of HapMap samples, we observed that compared with eQTLs, more eeQTL trans-factors can be found than cisfactors, and many of the eeQTLs cannot be found at the gene level. This work highlights that the regulation of exons adds another layer of regulation on gene expression, and that eeQTL analysis is a new approach for investigating genome-wide genomic variations that are involved in the regulation of alternative splicing.

The Landscape Of Human Mutually Exclusive Splicing

2017

Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genome-wide estimate of the extent and biological role of mutually exclusive splicing in humans we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA-seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than five-fold. The data provides strong evidence for the existence of large and multi-cluster MXEs in higher vertebrates and offers new insights into MXE splicing mechanics and evolution. Finally, MXEs are significantly enriched in pathogenic mutations and their spatio-temporal expression predicts human disease pathology.