Unusual molecular findings in autosomal recessive spinal muscular atrophy (original) (raw)
Related papers
Human Molecular Genetics, 1996
Spinal muscular atrophy is an autosomal recessive disorder which affects about 1 in 10 000 individuals. The three clinical forms of SMA were mapped to the 5q13 region. Three candidate genes have been isolated and shown to be deleted in SMA patients: the Survival Motor Neuron gene (SMN), the Neuronal Apoptosis Inhibitory Protein gene (NAIP) and the XS2G3 cDNA. In this report we present the molecular analysis of the SMN exons 7 and 8 and NAIP exon 5 in 65 Spanish SMA families. NAIP was mostly deleted in type I patients (67.9%) and SMN was deleted in 92.3% of patients with severe and milder forms. Most patients who lacked the NAIP gene also lacked the SMN gene, but we identified one type II patient deleted for NAIP exon 5 but not for SMN exons 7 and 8. Two other patients carried deletions of NAIP exon 5 and SMN exon 7 but retained the SMN exon 8. Three polymorphic variants from the SMN gene, showing changes on the sequence of the centromeric ( c BCD541) and telomeric copies of the SMN gene, were found. In addition, we show several genetic rearrangements of the telomeric SMN gene, which include duplication of this gene in one normal chromosome, and putative gene conversion events in affected and normal chromosomes. Altogether these results corroborate the high genetic variability of the SMA region. Finally, we have determined the ratio between the number of centromeric and telomeric copies of the SMN gene in parents of SMA patients, showing that the majority of parents of types II and III patients carried three or more copies of the c BCD541 gene; we suggest a relationship between the number of copies of c BCD541 and the disease phenotype.
Human Molecular Genetics, 1997
In an analysis of 30 families affected by spinal muscular atrophy (SMA) we have used the solid-phase minisequencing method to determine the ratio between the number of telomeric and centromeric copies of the survival motor neuron gene (SMN and c BCD541 respectively) on normal and SMA chromosomes. This has enabled us to establish haplotypes with regard to SMN and c BCD541, and estimate their frequencies, on both types of chromosomes. Six predominant haplotypes were identified, three for normal chromosomes and three for SMA chromosomes, characterized by having 0, 1, or 2 copies, respectively, of c BCD541. We found evidence for the presence of patients homozygous for a deletion of SMN and with only one copy of c BCD541, but found none deleted for all copies of this gene. Several asymptomatic carriers of SMA with only a single copy of SMN and no copy of c BCD541 were identified. We could not confirm the hypothesis that the presence of more copies of c BCD541 is correlated to a less severe course of the disease. The frequencies of haplotypes characterized by having 0, 1, or 2 copies, respectively, of c BCD541 were found to differ significantly between normal and SMA chromosomes. This distribution can be explained by an underrepresentation of the haplotype completely lacking SMN genes, which is expected to cause early embryonic death in homozygotes. This first report of a direct haplotype analysis of SMN and c BCD541 should help clarify the role of c BCD541 in the pathogenesis of SMA.
Deletions in the Survival Motor Neuron Gene in Iranian Patients with Spinal Muscular Atrophy
2009
Introduction: Spinal muscular atrophy (SMA) is a common neuromuscular disorder with progressive paralysis caused by the loss of α α α α α-motor neurons in the spinal cord. The survival motor neuron (SMN) protein is encoded by 2 genes, SMN1 and SMN2. The most frequent mutation is the biallelic deletion of exon 7 of the SMN1 gene. In SMA, SMN2 cannot compensate for the loss of SMN1, due to the exclusion of exon 7. The aim of our study was to estimate the frequency of the common SMN1 exon 7 deletion in patients referred to our centre for carrier detection and prenatal diagnosis. Materials and Methods: We performed the detection of exon 7 deletion of the SMN1 gene for the affected patients and fetuses suspected to have SMA. Results: Of 243 families, 195 were classified as SMA type I, 30 as type II, and 18 as type III according to their family histories. The analysis of exon 7 deletion among living affected children showed that 94% of the patients with SMA type I, 95% with type II families and 100% with type III had homozygous deletions. Of the prenatal diagnoses, 21 (22.8%) of the 92 fetuses were found to be affected and these pregnancies were terminated. Conclusions: The homozygosity frequency for the deletion of SMN1 exon 7 for all 3 types was (94%), similar to those of Western Europe, China, Japan and Kuwait.
Autosomal recessive spinal muscular atrophy (SMA) is, after cystic fibrosis, the second most common fatal monogenic disorder. Depending on the clinical type, SMA causes early death or increasing disability in childhood. Here, we report a three month old Saudi girl presented with a history of coughing and respiratory distress who had previous admissions due to pneumonia. There was a positive family history of sibling death, at age 2 years, due to SMA. Genetically, we found homozygous deletions of the Survival Motor Neuron (SMN1) gene exons 7 and 8 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Thus, confirming this case clinical diagnosis with presumed SMA type I. DNA testing of patients, in whom SMA is suspected, is a highly reliable, fast, and noninvasive method. The ability to detect homozygous gene deletions in a high percentage of typical SMA patients will much improve genetic counseling and prenatal diagnosis in affected families.
Identification and characterization of a spinal muscular atrophy-determining gene
Cell, 1995
Spinal muscular atrophy (SMA) is a common fatal autosomal recessive disorder characterized by degeneration of lower motor neurons, leading to progressive paralysis with muscular atrophy. The gene for SMA has been mapped to chromosome 5q13, where large-scale deletions have been reported. We describe here the inverted duplication of a 500 kb element in normal chromosomes and narrow the critical region to 140 kb within the telomeric region. This interval contains a 20 kb gene encoding a novel protein of 294 amino acids. An highly homologous gene is present in the centromeric element of 95% of controls. The telomeric gene is either lacking or interrupted in 226 of 229 patients, and patients retaining this gene (3 of 229) carry either a point mutation (Y272C) or short deletions in the consensus splice sites of introns 6 and 7. These data suggest that this gene, termed the survival motor neuron (SMN) gene, is an SMA-determining gene.
Intragenic variants in the SMN1 gene determine the clinical phenotype in 5q spinal muscular atrophy
Neurology Genetics, 2020
ObjectiveThe aim of the study was to report the proportion of homozygous and compound heterozygous variants in the survival motor neuron 1 (SMN1) gene in a large population of patients with spinal muscular atrophy (SMA) and to correlate the severity of the disease with the presence of specific intragenic variants in SMN1 and with the SMN2 copy number.MethodsFour hundred fifty Brazilian patients with SMA were included in a retrospective study, and clinical data were analyzed compared with genetic data; the SMN2 copy number was obtained by multiplex ligation-dependent probe amplification and pathogenic variants in SMN1 by next-generation sequencing.ResultsFour hundred two patients (89.3%) presented homozygous exon 7-SMN1 deletion, and 48 (10.7%) were compound heterozygous for the common deletion in one allele and a point mutation in the other allele. Recurrent variants in exons 3 and 6 (c.460C>T, c.770_780dup and c.734_735insC) accounted for almost 80% of compound heterozygous pati...
Human molecular …, 1996
Spinal muscular atrophy is an autosomal recessive disorder which affects about 1 in 10 000 individuals. The three clinical forms of SMA were mapped to the 5q13 region. Three candidate genes have been isolated and shown to be deleted in SMA patients: the Survival Motor Neuron gene (SMN), the Neuronal Apoptosis Inhibitory Protein gene (NAIP) and the XS2G3 cDNA. In this report we present the molecular analysis of the SMN exons 7 and 8 and NAIP exon 5 in 65 Spanish SMA families. NAIP was mostly deleted in type I patients (67.9%) and SMN was deleted in 92.3% of patients with severe and milder forms. Most patients who lacked the NAIP gene also lacked the SMN gene, but we identified one type II patient deleted for NAIP exon 5 but not for SMN exons 7 and 8. Two other patients carried deletions of NAIP exon 5 and SMN exon 7 but retained the SMN exon 8. Three polymorphic variants from the SMN gene, showing changes on the sequence of the centromeric (c BCD541) and telomeric copies of the SMN gene, were found. In addition, we show several genetic rearrangements of the telomeric SMN gene, which include duplication of this gene in one normal chromosome, and putative gene conversion events in affected and normal chromosomes. Altogether these results corroborate the high genetic variability of the SMA region. Finally, we have determined the ratio between the number of centromeric and telomeric copies of the SMN gene in parents of SMA patients, showing that the majority of parents of types II and III patients carried three or more copies of the c BCD541 gene; we suggest a relationship between the number of copies of c BCD541 and the disease phenotype.
The gene copy ratios of SMN1/SMN2 in Japanese carriers with type I spinal muscular atrophy
Brain and Development, 2001
Spinal muscular atrophy is an autosomal recessive neurodegenerative disorder with progressive weakness and atrophy of voluntary muscles. The survival motor neuron gene (SMN) is present in two highly homologous copies (SMN1 and SMN2) on chromosome 5q13. Homozygous deletion of exons 7 and 8 of SMN1 is responsible for spinal muscular atrophy. In spinal muscular atrophy patients, SMN2 partially compensates for the lack of SMN1. Previously, we reported the relatively high incidence of a large deletion including the SMN1 region in Japanese spinal muscular atrophy type I patients. In order to further establish the genetic background of Japanese spinal muscular atrophy type I patients, we investigated the SMN1/SMN2 ratio in the carriers. In normal individuals, there is one copy of each gene on the chromosome (the SMN1/SMN2 ratio was 1). Among 15 carriers (14 parents and one carrier sibling of Japanese type I spinal muscular atrophy patients with homozygous deletion of exons 7 and 8 of SMN1), we found that the SMN1/SMN2 ratio was 0.5 or 1 in 11 (73.3%) carriers. The remaining four carriers had an SMN1/SMN2 ratio of 1/3. This ®nding supports the idea that deletion rather than conversion is the main genetic event in type I spinal muscular atrophy. In addition, the ratio of SMN1/SMN2 among Japanese carriers, which was thought to be higher than that of the Western population, was compatible with the results obtained in Western populations. For further insight into the characteristic genetic background of spinal muscular atrophy in Japanese, determination of the gene copy number is essential. q