A Multi-Objective Optimization Method for Hospital Admission Problem—A Case Study on Covid-19 Patients (original) (raw)
Related papers
An evolutionary algorithm for the solution of multi-objective optimization problem
International Journal of Advances in Applied Sciences
Worldwide, the COVID-19 widespread has significant impact on a great number of people. The hospital admittance issue for patients with COVID-19 has been optimized by previous research. Identifying the symptoms that can be used to determine a patient's health status, whether they are dead or alive it is difficult task for medical professionals. To solve this issue, multi-objective group counselling optimization (MOGCO) algorithm used to control this problem. First, the zitzler-deb-thiele (ZDT)-2 benchmark function is used to evaluate the MOGCO, multi-objective particle swarm optimization (MOPSO), and non dominated sorting genetic algorithm (NSGA) II. In comparison to MOPSO and NSGA-II, MOGCO is closest to the Pareto front line according to graphic statistics on different fitness evolution values such as 4000, 6000, 8000, and 10000. As a result, MOGCO is used for the COVID-19 data optimization. Moreover, six symptoms (heart rate, oxygen saturation, fever, body pain, flue, and brea...
Computers
The problem of patient admission scheduling (PAS) is a nondeterministic polynomial time (NP)-hard combinatorial optimization problem with numerous constraints. Researchers have divided the constraints of this problem into hard (i.e., feasible solution) and soft constraints (i.e., quality solution). The majority of research has dealt with PAS using integer linear programming (ILP) and single objective meta-heuristic searching-based approaches. ILP-based approaches carry high computational demand and the risk of non-feasibility for a large dataset. In a single objective optimization, there is a risk of local minima due to the non-convexity of the problem. In this article, we present the first pareto front-based optimization for PAS using set of meta-heuristic approaches. We selected four multi-objective optimization methods. Problem-specific operators were developed for each of them. Next, we compared them with single objective optimization approaches, namely, simulated annealing and ...
Annals of Operations Research
The health care system is characterized by limited resources, including the physical facilities as well as skilled human resources. Due to the extensive fixed cost of medical facilities and the high specialization required by the medical staff, the problem of resource scarcity in a health care supply chain is much more acute than in other industries. In the pandemic of the Coronavirus, where medical services are the most important services in communities, and protective and preventive guidelines impose new restrictions on the system, the issue of resource allocation will be more complicated and significantly affect the efficiency of health care systems. In this paper, the problem of activating the operating rooms in hospitals, assigning active operating rooms to the COVID-19 and non-COVID-19 patients, assigning specialty teams to the operating rooms and assigning the elective and emergency patients to the specialty teams, and scheduling their operations is studied by considering the...