Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain) (original) (raw)

2000, Applied Geochemistry

Massive sulphide deposits of the northern Iberian Pyrite Belt (IPB) are mainly hosted by felsic volcanic rocks of rhyolitic to dacitic composition. Beneath most of the massive ores of this area (e.g., Concepcio n, San Miguel, Aguas TenÄ idas Este or San Telmo deposits) there is usually a wide hydrothermal alteration halo associated with stockwork-type mineralization. Within these alteration envelopes there are two principal rock types: (1) chlorite-rich rocks, linked to the inner and more intensely altered zones and dominantly comprising chlorite+pyrite+quartz+sericite (+carbonate+rutile+zircon+chalcopyrite), and (2) sericite-rich rocks, more common in the peripheral zones and showing a dominant paragenesis of sericite+quartz+pyrite+chlorite (+carbonate+rutile+zircon+sphalerite). Mass-balance calculations comparing altered and least-altered felsic volcanic rocks suggest that sericitization was accompanied by moderate enrichment in Mg, Fe and H 2 O, with depletion in Si, Na and K, and a slight net mass loss of about 3%. Chloritization shows an overall pattern which is similar to that of the sericitic alteration, but with large gains in Fe, Mg and H 2 O (and minor enrichment in Si, S and Mn), and a signi®cant loss of Na and K and a minor loss of Ca and Rb. However, chloritization has involved a much larger net mass change (mass gain of about 28%). Only a few elements such as Nb, Y, Zr, Ti, P and LREE appear to have remained inert during hydrothermal alteration, whilst Ti and Al have undergone very minor mobilization. The results point to the severity of the physico-chemical conditions that prevailed during the waxing stage of the ore-forming hydrothermal systems. Further, mineralogical and geochemical studies of the altered footwall rocks in the studied deposits indicate that hydrothermal ore-bearing¯uids reacted with host rocks in a multi-stage process which produced a succession of mineralogical and chemical changes as the temperature increased.