Transformation of Caenorhabditis elegans with genes from parasitic nematodes (original) (raw)

Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives

Pathogens, 2016

More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.

Caenorhabditis elegans as a model for parasitic nematodes

International Journal for Parasitology, 1998

Cuenorhabditis elegans has become a popular model system for genetic and molecular research, since it is easy to maintain and has a very fast life-cycle. Its genome is small and a virtually complete physical map in the form of cosmids and YAC clones exists. Thus it was chosen as a model system by the Genome Project for sequencing, and it is expected that by 1998 the complete sequence (100 million bp) will be available. The accumulated wealth of information about C. elegans should be a boon for nematode parasitologists, as many aspects of gene regulation and function can be studied in this simple model system. A large array of techniques is available to study many aspects of C. elegans biology. In combination with genome projects for parasitic nematodes, conserved genes can be identified rapidly. We expect many new areas of fertile research that will lead to new insights in helminth parasitology, which are based not only on the information gained from C. elegans per se, but also from its use as a heterologous system to study parasitic genes.

Parasitic nematodes—from genomes to control

2007

The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements.

Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements

International Journal for Parasitology, 2006

Critical investigations into the cellular and molecular biology of parasitic nematodes have been hindered by a lack of modern molecular genetic techniques for these organisms. One such technique is transgenesis. To our knowledge, the findings reported here demonstrate the first heritable DNA transformation and transgene expression in the intestinal parasite Strongyloides stercoralis. When microinjected into the syncitial gonads of free-living S. stercoralis females, a construct fusing the S. stercoralis era-1 promoter, the coding region for green fluorescent protein (gfp) and the S. stercoralis era-1 3 0 untranslated region was expressed in intestinal cells of normally developing F1 transgenic larvae. The frequency of transformation and GFP expression among F1 larvae was 5.3%. By contrast, expression of several promoter::gfp fusions incorporating only Caenorhabditis elegans regulatory elements was restricted to abortively developing F1 embryos of S. stercoralis. Despite its lack of regulated expression, PCR revealed that one of these C. elegans-based vector constructs, the sur-5::gfp fusion, is incorporated into F1 larval progeny of microinjected female worms and then transmitted to the F2 through F5 generations during two host passages conducted without selection and punctuated by free-living generations reared in culture. Heritable DNA transformation and regulated transgene expression, as demonstrated here for S. stercoralis, constitute the essential components of a practical system for transgenesis in this parasite. This system has the potential to significantly advance the molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally. q

Ancylostoma secreted protein 2: cloning and characterization of a second member of a family of nematode secreted proteins from Ancylostoma caninum

Molecular and Biochemical Parasitology, 1999

Invading infective third-stage larvae (L 3 ) of parasitic nematodes execute a series of programmed developmental events in response to a host-specific signal encountered during infection. One of these early events is the release of excretory/secretory products. Using an in vitro feeding assay that mimics these early events of infection, a protein released by in vitro activated larvae of the hookworm Ancylostoma caninum was identified. This protein, Ac-ASP-2, was partially sequenced, and the cDNA encoding it isolated by PCR and screening of an A. caninum L 3 cDNA library. The Ac-asp-2 cDNA encodes a protein of 219 amino acids that is related to a previously identified protein, Ac-ASP-1, from hookworms. Both molecules are members of an evolutionarily diverse family of molecules that include the venom allergens of the Hymenoptera, and the testes specific proteins/sperm-coating glycoproteins of mammals. Homologues are present in nearly all nematodes tested, as demonstrated by PCR-hybridization and database searching. The Ac-asp-2 mRNA is synthesized in all life history stages, but the gene product is released only by L 3 activated to feed in vitro. The wide distribution of the Ac-asp-2 in nematodes and its release in response to host specific signals suggests that Ac-ASP-2 serves an important function in nematode physiology and development, and possibly in the infective process of parasitic species. (J.M. Hawdon) 0166-6851/99/$ -see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 6 -6 8 5 1 ( 9 9 ) 0 0 0 1 1 -0

Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora

BMC Genomics, 2017

Background: Despite important progress in the field of innate immunity, our understanding of host immune responses to parasitic nematode infections lags behind that of responses to microbes. A limiting factor has been the obligate requirement for a vertebrate host which has hindered investigation of the parasitic nematode infective process. The nematode parasite Heterorhabditis bacteriophora offers great potential as a model to genetically dissect the process of infection. With its mutualistic Photorhabdus luminescens bacteria, H. bacteriophora invades multiple species of insects, which it kills and exploits as a food source for the development of several nematode generations. The ability to culture the life cycle of H. bacteriophora on plates growing the bacterial symbiont makes it a very exciting model of parasitic infection that can be used to unlock the molecular events occurring during infection of a host that are inaccessible using vertebrate hosts. Results: To profile the transcriptional response of an infective nematode during the early stage of infection, we performed next generation RNA sequencing on H. bacteriophora IJs incubated in Manduca sexta hemolymph plasma for 9 h. A subset of up-regulated and down-regulated genes were validated using qRT-PCR. Comparative analysis of the transcriptome with untreated controls found a number of differentially expressed genes (DEGs) which cover a number of different functional categories. A subset of DEGs is conserved across Clade V parasitic nematodes revealing an array of candidate parasitic genes.