Micromechanical non - intrusive thermal resistive sensor of fluid velocity into a rectangular cross-section flow channel (original) (raw)

Cited by

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (48)

  1. van Kuijk, J. Multi-parameter detection in fluid flows / J. van Kuijk, T. Lammerink, H.E. de Bree, M. Elwenspoek, J. Fluitman // Sensors and Actuators. A 47 (1995), p.p. 369-372.
  2. Козлов А.Г. Тепловые микросенсоры: классификация, основные типы / А.Г. Козлов // Нано-и микросистемная техника, №4 2006, стр. 2-13.
  3. Kuo, J. T. W. Micromachined Thermal Flow Sensors-A Review / Jonathan T. W. Kuo, Lawrence Yu and Ellis Meng // Micromachines 2012, 3, p.p. 550-573.
  4. Silvestri, S. Micromachined Flow Sensors in Biomedical Applications / Sergio Silvestri and Emiliano Schena // Micromachines 2012, 3, - p.p. 225-243.
  5. Сорохтіна // 5-й Международный радиоэлектронный форум "Прикладная радиоэлектроника. Состояние и перспективы развития". Харьков, Украина, 14-17 октября 2014 г. Том III, стр. 96 -99.
  6. Beigelbeck, R. From basic flow property to MEMS multiparameter sensors / R. Beigelbeck, S. Cerimovic, A. Talic, F. Kohl, A. Jachimowicz // AMA Conference 2015 -SENSOR 2015 and IRS2 2015, p.p. 216 -221.
  7. Damean, N. Heat transfer in a MEMS for mi- crofluidics / N. Damean, Paul P. L. Regtien, M. Elwenspoek // Sensors and Actuators A, -105 (2003) -P. 137-149.
  8. Hu, X. J. Investigation of the natural convection boundary condition in microfabricated struc- tures / X. Jack Hu, Ankur Jain, Kenneth E. Goodson // International Journal of Thermal Sciences 47 (2008) -p.p. 820-824.
  9. Борисов О.В. Мікромеханічний терморезисторний перетворювач швидкості газу / О.В. Борисов, Б.І. Лупина, Г.Л. Сорохтіна // 3-й Международный радиоэлектронный форум "Прикладная радиоэлектроника. Состояние и перспективы развития". Харьков, Украина, 22 -24 окт. 2008 г.
  10. Ландау Л.Д. Курс общей физики. Механика и молекулярная физика / Л.Д. Ландау, А.И. Ахиезер, Е.М. Лифшиц // М.: Наука, 1965. - 399 c.
  11. Сажин, О.В. Микросенсор потока теплового типа для датчика массового расхода воздуха / О.В. Сажин, Ю. В. Первушин // НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3, c. 52-61.
  12. Sazhin, O. Novel mass air flow meter for auto- mobile industry based on thermal flow mi- crosensor. I. Analytical model and microsensor / O. Sazhin // Flow Measurement and Instru- mentation 30 (2013) -p.p. 60-65.
  13. Tas N.R. Towards thermal flowsensing with pL/s resolution / N.R.Tas, T.S.J. Lammerink, P.J. Leussink, J.W. Berenschot, H-E. de Bree, M. Elwenspoek // Micromachined Devices and Components VI, 18 September 2000, Santa Clara, CA, USA (pp. 106-121).
  14. Lammerink, Theo S.J. Micro-liquid flow sensor / Theo S.J. Lammerink, Niels R.Tas, Miko El- wenspoek, Jan H.J. Fluitman // Sensors and Actuators A, 37-38 (1993) p.p. 45-50.
  15. Nguyen, N. T. Fundamentals and Applications of Microfluidics. Second Edition / Nam-Trung Nguyen, Steven T. Wereley // ARTECH HOUSE, INC. 2006. -497 P.
  16. Rasmussen, A. Simulation and optimization of a microfluidic flow sensor / A. Rasmussen, C. Mavriplis, M.E. Zaghloul, O. Mikulchenko, K. Mayaram // Sensors and Actuators A, -88 (2001) -p.121-132.
  17. Sabaté, N. Multi-range silicon micromachined flow sensor / N. Sabaté, J. Santander, L. Fon- seca, I. Gràcia, C. Cané // Sensors and Actua- tors. A (110) 2004, p.p. 282-288.
  18. Nguyen, N.T. Asymmetrical locations of heat- ers and sensors relative to each other using heater arrays -a novel method for designing multi-range electrocaloric mass-flow sensors / N.T. Nguyen, W. Dotzel // Sensors and Actua- tors A, 62 (1997) -p.p. 506 -512.
  19. King, L.V. On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with application to hot wire anemometry, Louis Vessot King, Proc. of the Royal Society (London), Series A, 1914, Vol. 90, -P. 563 - 570.
  20. Борисов О.В., Заворотний В.Ф., Кацан І.І., Лупина Б.І., Осинов С.М. "Моделювання та оптимізація конструкції мікромеханічного терморезисторного перетворювача", 2-й Международный радиоэлектронный форум  Лупина Б.І., 2016
  21. "Прикладная радиоэлектроника. Состояние и перспективы развития". Харьков, Украина, 19-23 сентября 2005 г. Том 3, стр. 240-243.
  22. Kim, T. H. Study of the sensitivity of a thermal flow sensor / Tae Hoon Kim, Dong-Kwon Kim, Sung Jin Kim // Int. Journal of Heat and Mass Transfer 52 (2009) -p.p. 2140-2144.
  23. Billat, S. Monolithic integration of micro- channel on disposable flow sensors for medical applications / S. Billat, K. Kliche, R. Gronmaier, P. Nommensen, J. Auber, F. Hedrich, R. Zengerle // Sensors and Actuators A 145-146 (2008) -p.p. 66-74.
  24. F. Hedrich, K. Kliche, M. Storz, S. Billat, M. Ashauer, R. Zengerle "Thermal flow sensors for MEMS spirometric devices", Sensors and Actuators A -162 (2010) -p.p.373-378.
  25. Политехническая, 16, г. Киев, 03056, Украина. References
  26. van Kuijk, J., Lammerink, T., de Bree, H.E., Elwenspoek, M., Fluitman, J. (1995). Multi-parameter de- tection in fluid flows. Sensors and Actuators. A 47, pp. 369 -372.
  27. Kozlov, A. G. (2006). Thermal microsensors: classification, main types Nano-and microsystem tech- nics, № 4, р.p. 2 -13. (Rus)
  28. Kuo, J. T. W., Lawrence, Y. and Meng, E. (2012). Micromachined Thermal Flow Sensors -A Review. Micromachines, 3, pp. 550 -573.
  29. Silvestri, S. and Schena, E. (2012). Micromachined Flow Sensors in Biomedical Applications. Microm- achines, 3, -pp. 225 -243.
  30. Borysov, O. V., Lupyna, B. I, Sorokhtina, H. L. (2014). Multifunction thermal resistance transducer of mechanical and thermal physic medium parameters. 5 -th International radioelectronic forum "Applied radioelectronics. Current state and perspectives". Kharkiv, Ukraine, 14 -17 October 2014 г. Vol. III, pp. 96 -99. (Ukr)
  31. Beigelbeck, R., Cerimovic, S., Talic, A., Kohl, F., Jachimowicz, A. (2015). From basic flow property to MEMS multiparameter sensors. AMA Conference -SENSOR 2015 and IRS2, pp. 216 -221.
  32. Damean, N., Regtien, P. P. L., Elwenspoek, M. (2003). Heat transfer in a MEMS for microfluidics. Sensors and Actuators, A. No 105, pp. 137 -149.
  33. Hu, X. J., Jain, A., Goodson K. E. (2008). Investigation of the natural convection boundary condition in microfabricated structures. International Journal of Thermal Sciences. No 47. pp. 820 -824.
  34. Borysov, O. V., Lupyna, B. I, Sorokhtina, H. L. (2008). Micromechanical thermal resistive gas velocity sensor. 3 -rd International radioelectronic forum "Applied radioelectronics. Current state and perspec- tives". Kharkiv, Ukraine, 22 -24 October 2008. (Ukr)
  35. Landau, L. D., Akhiezer, A. I., Lifshitz, E. M. (1965). General Physics. Mechanics & Molecular Physics. M.: Science. -399 p. (Rus)
  36. Sazhin, O. V., Pervushin Yu. V. (2011). Thermal microsensor of air mass flow. Science instrument en- gineering Vol 21, № 3, pp. 52 -61. (Rus)
  37. Sazhin, O. (2013). Novel mass air flow meter for automobile industry based on thermal flow microsen- sor. I. Analytical model and microsensor. Flow Measurement and Instrumentation. Vol. 30, pp. 60 - 65.
  38. Tas, N. R., Lammerink, T. S. J., Leussink, P. J., Berenschot, J. W., de Bree, H-E., Elwenspoek, M. (2000). Towards thermal flowsensing with pL/s resolution. Micromachined Devices and Components VI, 18 September 2000, Santa Clara, CA, USA, pp. 106-121.
  39. Lammerink, T. S. J., Tas, N. R., Elwenspoek, M., Fluitman, J. H. J. (1993). Micro-liquid flow sensor. Sensors and Actuators A, Vol. 37-38, pp. 45-50.
  40. Nguyen, N. T., Wereley S. T. (2006). Fundamentals and Applications of Microfluidics. Second Edition. ARTECH HOUSE, INC. -497 p.
  41. Rasmussen, A., Mavriplis, C., Zaghloul, M.E., Mikulchenko, O., Mayaram K. (2001). Simulation and optimization of a microfluidic flow sensor. Sensors and Actuators A,Vol. 88, pp. 121 -132.
  42. Sabaté, N., Santander, J., Fonseca, L., Gràcia, I., Cané C. (2004). Multi-range silicon micromachined flow sensor. Sensors and Actuators A. Vol. 110, pp. 282-288.
  43. Nguyen, N. T., Dotzel, W. Asymmetrical locations of heaters and sensors relative to each other using heater arrays -a novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A. Vol 62, pp. 506 -512.
  44. King, L. V. (1914). On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with application to hot wire anemometry, Louis Ves- sot King, Proc. of the Royal Society (London), Series A, Vol. 90, p. 563 -570.
  45. Borysov, O. V., Zavorotnyi, V. F., Katsan, I. I., Lupyna, B. I, Osinov, S. N. (2005). Modelling and struc- ture optimization of a micromechanical thermal sensor. 2 -nd International radioelectronic forum "Ap- plied radioelectronics. Current state and perspectives". Kharkiv, Ukraine, 19 -23 September 2005. Vol 3, pp. 240 -243. (Ukr)
  46. Kim, T. H., Kim, D.-K., Kim, S. J. (2009). Study of the sensitivity of a thermal flow sensor. Int. Journal of Heat and Mass Transfer. Vol. 52, pp. 2140 -2144.
  47. Billat, S., Kliche, K., Gronmaier, R., Nommensen, P., Auber, J., Hedrich, F., Zengerle, R. (2008). Monolithic integration of micro-channel on disposable flow sensors for medical applications. Sensors and Actuators A. Vol. 145 -146, pp. 66 -74.
  48. Hedrich, F., Kliche, K., Storz, M., Billat, S., Ashauer, M., Zengerle, R. (2010). Thermal flow sensors for MEMS spirometric devices. Sensors and Actuators A. Vol. 162, pp. 373 -378.