Discovery of a Metal-Poor Field Giant with a Globular Cluster Second-Generation Abundance Pattern (original) (raw)
Related papers
TheGaia-ESO Survey: A globular cluster escapee in the Galactic halo
Astronomy & Astrophysics, 2015
A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [Mg/Fe] = −0.36 ± 0.04 and [Al/Fe] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity and find it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact.
Discovery of a New Stellar Subpopulation Residing in the (Inner) Stellar Halo of the Milky Way
The Astrophysical Journal
We report the discovery of a unique collection of metal-poor giant-stars, that exhibit anomalously high levels of 28 Si, clearly above typical Galactic levels. Our sample spans a narrow range of metallicities, peaking at −1.07 ± 0.06, and exhibit abundance ratios of [Si,Al/Fe] that are as extreme as those observed in Galactic globular clusters (GCs), and Mg is slightly less overabundant. In almost all the sources we used, the elemental abundances were re-determined from high-resolution spectra, which were re-analyzed assuming LTE. Thus, we compiled the main element families, namely the light elements (C, N), α−elements (O, Mg, Si), iron-peak element (Fe), s−process elements (Ce, Nd), and the light odd-Z element (Al). We also provide dynamical evidence that most of these stars lie on tight (inner)halo-like and retrograde orbits passing through the bulge. Such kinds of objects have been found in present-day halo GCs, providing the clearest chemical signature of past accretion events in the (inner) stellar halo of the Galaxy, formed possibly as the result of dissolved halo GCs. Their chemical composition is, in general, similar to that of typical GCs population, although several differences exist.
The Astrophysical Journal
We report the peculiar chemical abundance patterns of eleven atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low-Mg abundances ([Mg/Fe]<0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic CGs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy; a fundamental step forward to understand the Galactic formation and evolution.
A stellar relic from the early Milky Way
Nature, 2002
The chemical composition of the most metaldeficient stars reflects the composition of the gas from which they formed. These old stars provide crucial clues to the star formation history and the synthesis of chemical elements in the early Universe. They are the local relics of epochs otherwise observable only at very high redshifts 1,2 ; if totally metal-free ("population III") stars could be found, this would allow the direct study of the pristine gas from the Big Bang. Earlier searches for such stars found none with an iron abundance less than 1/10,000 that of the Sun 3,4 , leading to the suggestion 5,6 that low-mass stars could only form from clouds above a critical iron abundance. Here we report the discovery of a lowmass star with an iron abundance as low as 1/200,000 of the solar value. This discovery suggests that population III stars could still exist, that is, that the first generation of stars also contained long-lived low-mass objects. The previous failure to find them may be an observational selection effect.
The Astrophysical Journal, 2019
The stellar populations in the inner kiloparsecs of the Milky Way (MW) show complex kinematical and chemical structures. The origin and evolution of these structures are still under debate. Here we study the central region of a fully cosmological hydrodynamical simulation of a disk galaxy that reproduces key properties of the inner kiloparsecs of the MW: it has a boxy morphology and shows an overall rotation and dispersion profile in agreement with observations. We use a clustering algorithm on stellar kinematics to identify a number of discrete kinematic components: a high-and low-spin disk, a stellar halo, and two bulge components, one fast-rotating and one slowrotating. We focus on the two bulge components and show that the slow-rotating one is spherically symmetric while the fast-rotating component shows a boxy/peanut morphology. Although the two bulge components are kinematically discrete populations at present day, they are both mostly formed over similar timescales, from disk material. We find that stellar particles with lower initial birth angular momentum (most likely thick-disk stars) end up in the slow-rotating low-spin bulge, while stars with higher birth angular momentum (most likely thin-disk stars) are found in the high-spin bulge. This has the important consequence that a bulge population with a spheroidal morphology does not necessarily indicate a merger origin. In fact, we do find that only ∼2.3% of the stars in the bulge components are ex situ stars brought in by accreted dwarf galaxies early on. We identify these ex situ stars as the oldest and most metal-poor stars on highly radial orbits with large vertical excursions from the disk.
The Astrophysical Journal, 2018
We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities <-[ ] Fe H 0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the α-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low-and high-α halo stars found in previous studies, suggesting that these are samples of the same two populations.
Field halo stars: the globular cluster connection
High resolution and high signal-to-noise spectra of about 20 metal-poor stars have been analysed. The correlations between the relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones.
The origin of galactic metal-rich stellar halo components with highly eccentric orbits
Monthly Notices of the Royal Astronomical Society, 2019
Using the astrometry from the ESA’s Gaia mission, previous works have shown that the Milky Way stellar halo is dominated by metal-rich stars on highly eccentric orbits. To shed light on the nature of this prominent halo component, we have analysed 28 Galaxy analogues in the Auriga suite of cosmological hydrodynamics zoom-in simulations. Some three quarters of the Auriga galaxies contain prominent components with high radial velocity anisotropy, β > 0.6. However, only in one third of the hosts do the high-β stars contribute significantly to the accreted stellar halo overall, similar to what is observed in the Milky Way. For this particular subset we reveal the origin of the dominant stellar halo component with high metallicity, [Fe/H] ∼ −1, and high orbital anisotropy, β > 0.8, by tracing their stars back to the epoch of accretion. It appears that, typically, these stars come from a single dwarf galaxy with a stellar mass of the order of 109−1010,rmModot10^9-10^{10}\, {\rm M}_\odot109−1010,rmModot that merg...
Chemical Substructure in the Milky Way Halo: A New Population of Old Stars
The Astrophysical Journal, 2003
We report the results of a coherent study of a new class of halo stars defined on the basis of the chemical compositions of three metal-poor objects (½Fe=H ' À2) that exhibit unusually low abundances of -element (Mg, Si, Ca) and neutron-capture (Sr, Y, Ba) material. Our analyses confirm and expand on earlier reports of atypicaland neutron-capture abundances in BD +80 245, G4-36, and CS 22966-043. We also find that the latter two stars exhibit unusual relative abundance enhancements within the iron peak (Cr, Mn, Ni, Zn), along with what may be large abundances of Ga, an element not previously reported as being observed in any metal-poor star. These results provide further evidence that chemical enrichment and star formation histories varied from region to region within the Milky Way halo. Comparing the chemical abundances of the newly identified stellar population to supernova model yields, we derive supernova ratios of Type Ia versus Type II events in the range of 0:6dðN Ia =N II Þ New Pop d1:3. For the Sun, we derive 0:18 AE 0:01 < ðN Ia =N II Þ < 0:25 AE 0:06, supernova ratios in good agreement with values found in the literature. Given the relatively low metallicity and relatively high N Ia =N II h iratios of the low-stars studied here, these objects may have been born from material produced in the yields of the earliest Type Ia supernova events. We also report the results of a preliminary attempt to employ the observed chemical abundances of low-metallicity stars in the identification, and possible cosmic evolution, of Type Ia supernova progenitors, and we discuss the limitations of current model yields.
arXiv Solar and Stellar Astrophysics, 2020
We analyze the dynamical properties of ∼1500 very metal-poor (VMP; [Fe/H] −2.0) halo stars, based primarily on medium-resolution spectroscopic data from the HK and Hamburg/ESO surveys. These data, collected over the past thirty years, are supplemented by a number of calibration stars and other small samples, along with astrometric information from Gaia DR2. We apply a clustering algorithm to the 4-D energy-action space of the sample, and identify a set of 38 Dynamically Tagged Groups (DTGs), containing between 5 and 30 member stars. Many of these DTGs can be associated with previously known prominent substructures such as Gaia-Sausage/Enceladus (GSE), Sequoia, the Helmi Stream (HStr), and Thamnos. Others are associated with previously identified smaller dynamical groups of stars and streams. We identify 10 new DTGs as well, many of which have strongly retrograde orbits. We also investigate possible connections between our DTGs and ∼300 individual r-processenhanced (RPE) stars from a recent literature compilation. We find that several of these objects have similar dynamical properties to GSE (5), the HStr (4), Sequoia (1), and Rg5 (1), indicating that their progenitors might have been important sources of RPE stars in the Galaxy. Additionally, a number of our newly identified DTGs are shown to be associated with at least two RPE stars each (DTG-2: 3, DTG-7: 2; DTG-27: 2). Taken as a whole, these results are consistent with ultra-faint and/or dwarf spheroidal galaxies as birth environments in which r-process nucleosynthesis took place, and then were disrupted by the Milky Way.