The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field (original) (raw)
Related papers
Automation of AMOEBA polarizable force field parameterization for small molecules
Theoretical Chemistry Accounts, 2012
A protocol to generate parameters for the AMOEBA polarizable force field for small organic molecules has been established, and polarizable atomic typing utility, Poltype, which fully automates this process, has been implemented. For validation, we have compared with quantum mechanical calculations of molecular dipole moments, optimized geometry, electrostatic potential, and conformational energy for a variety of neutral and charged organic molecules, as well as dimer interaction energies of a set of amino acid side chain model compounds. Furthermore, parameters obtained in gas phase are substantiated in liquid-phase simulations. The hydration free energy (HFE) of neutral and charged molecules have been calculated and compared with experimental values. The RMS error for the HFE of neutral molecules is less than 1 kcal/ mol. Meanwhile, the relative error in the predicted HFE of salts (cations and anions) is less than 3% with a correlation coefficient of 0.95. Overall, the performance of Poltype is satisfactory and provides a convenient utility for applications such as drug discovery. Further improvement can be achieved by the systematic study of various organic compounds, particularly ionic molecules, and refinement and expansion of the parameter database. Keywords AMOEBA Á Polarizable force field Á Small molecule modeling Á Poltype Á Atomic typer Á Molecular dynamics Abbreviations AMOEBA Atomic multipole optimized energetics for biomolecular applications DMA Distributed multipole analysis HFE Hydration free energy ESP Electrostatic potential Published as part of the special collection of articles: From quantum mechanics to force fields: new methodologies for the classical simulation of complex systems. Electronic supplementary material The online version of this article (
A Polarization-Consistent Model for Alcohols to Predict Solvation Free Energies
Journal of Chemical Information and Modeling, 2020
Classical nonpolarizable models, normally based on a combination of Lennard-Jones sites and point charges, are extensively used to model thermodynamic properties of fluids, including solvation. An important shortcoming of these models is that they do not explicitly account for polarization effects, i.e., a description of how the electron density responds to changes in the molecular environment. Instead, polarization is implicitly included, in a mean-field sense, into the parameters of the model, usually by fitting to pure liquid properties (e.g., density). This causes problems when trying to describe thermodynamic properties that involve a change of phase (e.g., enthalpy of vaporization), that directly depend on the electronic response of the medium (e.g., dielectric constant), and that require mixing or solvation in different media (e.g., solvation free energies). Fully polarizable models present a natural route for addressing these limitations but at the price of a much higher computational cost. In this work, we combine the best of those two approaches by running fast simulations using nonpolarizable models and applying post facto corrections to the computed properties in order to account for the effects of polarization. By applying this new paradigm, a new united-atom force field for alcohols is developed that is able to predict both pure liquid properties, including dielectric constant, and solvation free energies in different solvents with a high degree of accuracy. This paves the way for the development of a generic classical nonpolarizable force field that can predict solvation of drug-like molecules in a variety of solvents.
The Journal of Chemical Physics, 2006
Molecular dynamics simulations were performed using a modified amoeba force field to determine hydration and dynamical properties of the divalent cations Ca 2+ and Mg 2+ . The extension of amoeba to divalent cations required the introduction of a cation specific parametrization. To accomplish this, the Tholé polarization damping model parametrization was modified based on the ab initio polarization energy computed by a constrained space orbital variation energy decomposition scheme. Excellent agreement has been found with condensed phase experimental results using parameters derived from gas phase ab initio calculations. Additionally, we have observed that the coordination of the calcium cation is influenced by the size of the periodic water box, a recurrent issue in first principles molecular dynamics studies.
Predicting hydrophobic solvation by molecular simulation: 1. Testing united-atom alkane models
Journal of computational chemistry, 2017
We present a systematic test of the performance of three popular united-atom force fields-OPLS-UA, GROMOS and TraPPE-at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united-atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the mag...
Journal of Computational Chemistry, 2011
N-acetyl-β-glucosamine (NAG) is an important moiety of glycoproteins and is involved in many biological functions. However, conformational and dynamical properties of NAG molecules in aqueous solution, the most common biological environment, remain ambiguous due to limitations of experimental methods. Increasing efforts are made to probe structural properties of NAG and NAG-containing macromolecules, like peptidoglycans and polymeric chitin, at the atomic level using molecular dynamics simulations. In this work, we develop a polarizable carbohydrate force field for NAG and contrast simulation results of various properties using this novel force field and an analogous non-polarizable (fixed charge) model. Aqueous solutions of NAG and its oligomers are investigated; we explore conformational properties (rotatable bond geometry), electrostatic properties (dipole moment distribution), dynamical properties (self-diffusion coefficient), hydrogen bonding (water bridge structure and dynamics), and free energy of hydration. The fixedcharge carbohydrate force field exhibits deviations from the gas-phase relative rotation energy of exocyclic hydroxymethyl side-chain and of chair/boat ring distortion. The polarizable force field predicts conformational properties in agreement with corresponding first-principles results. NAGwater hydrogen bonding pattern is studied through radial distribution functions and correlation functions. Intermolecular hydrogen bonding between solute and solvent is found to stabilize NAG solution structures while intramolecular hydrogen bonds define glycosidic linkage geometry of NAG oligomers. The electrostatic component of hydration free energy is highly dependent on force field atomic partial charges, influencing a more favorable free energy of hydration in the fixed-charge model compared to the polarizable model.
Accurate determination of solvation free energies of neutral organic compounds from first principles
Nature Communications
The main goal of molecular simulation is to accurately predict experimental observables of molecular systems. Another long-standing goal is to devise models for arbitrary neutral organic molecules with little or no reliance on experimental data. While separately these goals have been met to various degrees, for an arbitrary system of molecules they have not been achieved simultaneously. For biophysical ensembles that exist at room temperature and pressure, and where the entropic contributions are on par with interaction strengths, it is the free energies that are both most important and most difficult to predict. We compute the free energies of solvation for a diverse set of neutral organic compounds using a polarizable force field fitted entirely to ab initio calculations. The mean absolute errors (MAE) of hydration, cyclohexane solvation, and corresponding partition coefficients are 0.2 kcal/mol, 0.3 kcal/mol and 0.22 log units, i.e. within chemical accuracy. The model (ARROW FF) ...
We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure−property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold crossvalidation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9−1.0 log S units.
Journal of Computational Chemistry, 1995
The point-chart approximation of the Miertus-Scrocco-Tomasi solvation model (MST-PC) based on a continuum representation of the solvent has been incorporated in force field calculations. Application in molecular mechanics (MM) involves conformational equilibria in solution: rotational isomers of ethylene glycol (I), 1,2-difluoroethane (10, fluoroacetic acid (110, and representative conformers of macrocyclic receptors such as 18-crown-6 (IV), cryptand 2.2.2 (V), and t-butyl-calix[4]arenetetraamide (VI). Assessment of the MST-PC results is based on the comparison with ab initio reactive field calculations (for I-111), with the continuum model of Still (W. C. Still et al., J.
Energetics of Cyclic Dipeptide Crystal Packing and Solvation
Biophysical Journal, 1997
Calculations of the thermodynamics of transfer of the cyclic alanine-alanine (cAA) and glycine-glycine (cGG) dipeptides between the gas, water, and crystal phases were carried out using a combination of molecular mechanics, normal mode analysis, and continuum electrostatics. The experimental gas-to-water solvation free energy and the enthalpy of gas-to-crystal transfer of cGG are accurately reproduced by the calculations. The enthalpies of cGG and cAA crystal-to-water transfer are also close to the experimental values. A combination of experimental data and normal mode analysis of cGG provides an accurate estimate of the association entropy penalty (loss of rotational and translational entropy and gain in vibrational entropy) for "binding" in the crystalline phase of-14.1 cal/mol/K. This is a smaller number than most previous theoretical estimates, but it is similar to previous experimental estimates. Calculated entropies of the crystal phase underestimate the experimental entropy by about 15 cal/mol/K because of neglect of longe-range lattice motions. Comparison of the intermolecular interactions in the crystals of cGG and cAA provides a possible explanation of the puzzling decrease in enthalpy, with increasing hydrophobicity seen previously for both cyclic dipeptide dissolution and protein unfolding. This decrease arises from a favorable long-range electrostatic interaction between dipeptide molecules in the crystals, which is attenuated by the more hydrophobic side chains.