Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells (original) (raw)
Related papers
Journal of Experimental Medicine, 1999
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) is a novel human lymphotropic herpesvirus linked to several human neoplasms. To date, no animal model for infection by this virus has been described. We have examined the susceptibility of C.B-17 scid/scid mice implanted with human fetal thymus and liver grafts (SCID-hu Thy/Liv mice) to KSHV infection. KSHV virions were inoculated directly into the implants, and viral DNA and mRNA production was assayed using real-time quantitative polymerase chain reaction. This revealed a biphasic infection, with an early phase of lytic replication accompanied and followed by sustained latency. Ultraviolet irradiation of the inoculum abolished all DNA-and mRNA-derived signals, and infection was inhibited by ganciclovir. Viral gene expression was most abundant in CD19 ϩ B lymphocytes, suggesting that this model faithfully mimics the natural tropism of this virus. Short-term coinfection with HIV-1 did not alter the course of KSHV replication, nor did KSHV alter levels of HIV-1 p24 during the acute phase of the infection. Although no disease was evident in infected animals, SCID-hu Thy/Liv mice should allow the detailed study of KSHV tropism, latency, and drug susceptibility.
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) as a tumour virus
Herpes : the journal of the IHMF, 2003
Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is present in all clinical variants of Kaposi's sarcoma and two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman's disease (MCD). Seroepidemiological studies have proved the link between KSHV/HHV-8 infection and development of Kaposi's sarcoma. The virus encodes a number of genes homologous to human genes involved in cell proliferation, anti-apoptosis, angiogenesis and cytokine action. In Kaposi's sarcoma and primary effusion lymphoma, however, most tumour cells only show evidence of latent infection, with a restricted gene expression pattern including latency associated nuclear antigen 1, able to interact with p53 and the retinoblastoma gene. The small number of tumour cells expressing lytic genes may, however, be important for tumour growth by paracrine mechanisms as has been shown for the viral G-protein-coupled receptor. Understanding these molecula...
Kaposi's Sarcoma-Associated Herpesvirus Glycoprotein K8.1 Is Dispensable for Virus Entry
Journal of Virology, 2004
Kaposi's sarcoma-associated herpesvirus (KSHV) is considered the etiologic agent of Kaposi's sarcoma and several lymphoproliferative disorders. Recently, the KSHV genome was cloned into a bacterial artificial chromosome and used to construct a recombinant KSHV carrying a deletion of the viral interferon regulatory factor . 76:6185-6196, 2002). The K8.1 glycoprotein is a structural component of the KSHV particle and is thought to facilitate virus entry by binding to heparan sulfate moieties on cell surfaces. To further address the role of K8.1 in virus infectivity, a K8.1-null recombinant virus (BAC36⌬K8.1) was constructed by deletion of most of the K8.1 open reading frame and insertion of a kanamycin resistance gene cassette within the K8.1 gene. Southern blotting and diagnostic PCR confirmed the presence of the engineered K8.1 gene deletion. Transfection of the wild-type genome (BAC36) and mutant genome (BAC36⌬K8.1) DNAs into 293 cells in the presence or absence of the complementing plasmid (pCDNAK8.1A), transiently expressing the K8.1A gene, produced infectious virions in the supernatants of transfected cells. These results demonstrated that the K8.1 glycoprotein is not required for KSHV entry into 293 cells.
Journal of Virology, 2019
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro. Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal, and remains to be investigated in vivo due to generally poor infectivity in vitro. Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types including epithelial, endothelial, and fibroblasts.
Cancer Cell, 2007
Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to non-tumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene up-regulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth-restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS.
Kaposi sarcoma herpesvirus pathogenesis
Philosophical Transactions of the Royal Society B: Biological Sciences, 2017
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its ...
1999
Kaposi's sarcoma-associated herpesvirus (KSHV) has been consistently identified in Kaposi's sarcomas (KS), body cavity-based lymphomas (BCBL), and some forms of Castleman's disease. Previous serological tests with KS patient sera have detected lytic-cycle polypeptides from KSHV-infected BCBL cells. We have found that these polypeptides are predominantly encoded by the K8.1 open reading frame, which is present in the same genomic position as virion envelope glycoproteins of other gammaherpesviruses. The cDNA of K8.1 from BCBL-1 cells was found to encode a glycosylated protein with an apparent molecular mass of 37 kDa. K8.1 was found to be expressed during lytic KSHV replication in BCBL-1 cells and was localized on the surface of cells and virions. The results of immunofluorescence and immunoelectron microscopy suggest that KSHV acquires K8.1 protein on its virion surface during the process of budding at the plasma cell membrane. When KSHV K8.1 derived from mammalian cells was used as an antigen in immunoblot tests, antibodies to K8.1 were detected in 18 of 20 KS patients and in 0 of 10 KS-negative control subjects. These results demonstrate that the K8.1 gene encodes a KSHV virion-associated glycoprotein and suggest that antibodies to K8.1 may prove useful as contributory serological markers for infection by KSHV.