Fish assemblage change following the structural restoration of a degraded stream (original) (raw)

River Research and Applications

Decades of anthropogenic pressure have harmed riverscapes throughout North America by degrading habitats and water quality and can result in the extirpation of sensitive aquatic taxa. Local stream restoration projects have increased in frequency, but monitoring is still infrequent. In 2010, Kickapoo Creek in East Central Illinois was subjected to a stream restoration project that included implementation of artificial riffles, riprap, scouring keys, and riparian vegetation. We monitored the restoration efforts for 6 years after the restoration through annual sampling efforts at restored and reference sites to determine changes in habitat and fish assemblage using standard habitat sampling and electrofishing techniques. We observed distinct temporal and spatial shifts in physico-chemical parameters along with changes in fish community structure. Although biotic integrity remained moderately low in reference assemblages, restored reaches showed 3-year delay in response to restoration, with biotic integrity positively linked to additional instream habitat and altered channel morphology. Larger substrate sizes, submerged terrestrial vegetation, and newly formed scour pools along with reduced siltation were found in the restored sites, in contrast to the reference sites. These changes resulted in increased species diversity, reduced number of opportunistic species and consequently an overall increase in health of fish communities. We also observed recruitment of habitat specialists and increase in species with reproductive strategies that rely on complex substrates. The results of this study highlight some of the complex dynamics driving reach-scale restoration projects. We demonstrate the usefulness of structural restoration as a management tool to increase biotic integrity through long-term alteration of critical habitat. The delay in the response of species to the restoration efforts emphasizes the need for long-term continuous temporal and spatial monitoring.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.