Dynamin and Activity Regulate Synaptic Vesicle Recycling in Sympathetic Neurons (original) (raw)
Related papers
Proceedings of the National Academy of Sciences, 2008
Mice lacking expression of dynamin 1, a GTPase implicated in the fission reaction of synaptic vesicle endocytosis, fail to thrive and exhibit severe activity-dependent endocytic defects at their synapses. Here, we have used electron tomography to investigate the massive increase in clathrin-coated pit abundance that is selectively observed at a subset of synapses in dynamin 1 KO primary neuron cultures under conditions of spontaneous network activity. This increase, leading to branched tubular plasma membrane invaginations capped by clathrin-coated buds, occurs selectively at inhibitory synapses. A similar massive increase of clathrin-coated profiles (in this case, of clathrin-coated vesicles) is observed at inhibitory synapses of neurons that lack expression of synaptojanin 1, a phosphoinositide phosphatase involved in clathrin-coated vesicle uncoating. Thus, although excitatory synapses are largely spared under these conditions, inhibitory synapses are uniquely sensitive to perturbation of endocytic proteins, probably as a result of their higher levels of tonic activity leading to a buildup of clathrin-coated intermediates in these synapses. In contrast, the predominant endocytic structures observed at the majority of dynamin 1 KO synapses after acute stimulation are endosome-like intermediates that originate by a dynamin 1-independent form of endocytosis. These findings reveal a striking heterogeneity in the mode of synaptic vesicle recycling in different synapses and functional states.
Synaptic Vesicle Endocytosis: The Races, Places, and Molecular Faces
NeuroMolecular Medicine, 2002
The classical experiments on synaptic vesicle recycling in the 1970s by Heuser and Reese, Ceccarelli, and their colleagues raised opposing theories regarding the speed, mechanisms, and locations of membrane retrieval at the synapse. The Heuser and Reese experiments supported a model in which synaptic vesicle recycling is mediated by the formation of coated vesicles, is relatively slow, and occurs distally from active zones, the sites of neurotransmitter release. Because heavy levels of stimulation were needed to visualize the coated vesicles, Ceccarelli's experiments argued that synaptic vesicle recycling does not require the formation of coated vesicles, is relatively fast, and occurs directly at the active zone in a "kiss-and-run" reversal of exocytosis under more physiological conditions. For the next thirty years, these models have provided the foundation for studies of the rates, locations, and molecular elements involved in synaptic vesicle endocytosis. Here, we describe the evidence supporting each model and argue that the coated vesicle pathway is the most predominant physiological mechanism for recycling synaptic vesicles.
Dynamin isoforms decode action potential firing for synaptic vesicle recycling
Journal of Biological Chemistry, 2013
Background: The molecular mechanism linking variation in presynaptic neuronal activity to vesicle trafficking is unknown. Results: Three isoforms of dynamin, an essential endocytic protein, mediate vesicle reuse, having distinct rate and time constants with physiological action potential frequencies. Conclusion: Dynamin isoforms select appropriate vesicle reuse pathways associated with specific neuronal firing patterns. Significance: Individual dynamin isoforms regulate distinct synaptic vesicle reuse pathways that cover the full range of physiological action potential frequencies.
Experimental and modeling investigation of the mechanism of synaptic vesicles recycling
Biophysics, 2012
Under the condition of microelectrode recording and fluorescence microscopy with dye FM 1 43 the research of exo /endocytosis of synaptic vesicles in motor nerve terminals (NT) of frog cutaneous pectoris and white mice diaphragm muscles during high frequency stimulation (20 imp/s) was carried out. A mathe matical modeling allowed us to conclude that the obtained experimental data can be explained in the follow ing framework. Three pools of synaptic vesicles are involved in neurotransmitter release in the frog motor NT. Recovery of these pools is provided by endocytosis of two types: fast endocytosis with limited capacity and slow endocytosis. Fast reconstructing vesicles refill the mobilization pool and slow endocytosis recovers the reserve pool. Our modeling investigation has revealed in frog NT independent recruiting of reserve and mobi lization pools to the neurotransmitter secretion, i.e. this pools work concurrently. Experimental data, obtained on mice preparations, are well described with the framework of two pools model including single type of endocytosis (fast endocytosis).
A readily retrievable pool of synaptic vesicles
Nature neuroscience, 2011
Although clathrin-mediated endocytosis is thought to be the predominant mechanism of synaptic vesicle recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a presorted and preassembled pool of synaptic vesicle proteins on the presynaptic membrane might support a first wave of fast clathrin-mediated endocytosis. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of synaptic vesicle proteins in rat hippocampal neurons using a new type of probe. By applying cypHer5E, a new cyanine dye-based pH-sensitive exogenous marker, coupled to antibodies to luminal domains of synaptic vesicle proteins, we could reliably monitor synaptic vesicle recycling and demonstrate the preferential recruitment of a surface pool of synaptic vesicle proteins upon stimulated endocytosis. By using fluorescence nanoscopy of surface-labeled synaptotagmin 1, we could resolve the spatial distribution of the surface pool at the periactive z...
Retrograde regulation of synaptic vesicle endocytosis and recycling
Nature Neuroscience, 2003
Sustained release of neurotransmitter depends upon the recycling of synaptic vesicles. Until now, it has been assumed that vesicle recycling is regulated by signals from the presynaptic bouton alone, but results from rat hippocampal neurons reported here indicate that this need not be the case. Fluorescence imaging and pharmacological analysis show that a nitric oxide (NO) signal generated postsynaptically can regulate endocytosis and at least one later step in synaptic vesicle recycling. The proposed retrograde pathway involves an NMDA receptor (NMDAR)-dependent postsynaptic production of NO, diffusion of NO to a presynaptic site, and a cGMP-dependent increase in presynaptic phosphatidylinositol 4,5-biphosphate (PIP2). These results indicate that the regulation of synaptic vesicle recycling may integrate a much broader range of neural activity signals than previously recognized, including postsynaptic depolarization and the activation of NMDARs at both immediate and nearby postsynaptic active zones.
Journal of Neurocytology, 1987
The mammalian superior cervical sympathetic ganglion has been extensively used to study the kinetics of ACh metabolism and release. The present investigation examined the time course of changes in the number of synaptic vesicles and abundance of plasma membrane at preganglionic nerve terminals using stimulation protocols similar to those used in previous biochemical and electrophysiological studies. Continuous stimulation of the preganglionic trunk to the cat superior cervical ganglion in vivo produced an initially rapid fall in the number of clear synaptic vesicles followed by a subsequent plateau. Reciprocal changes in plasma membrane occurred with a similar time course. The plateau phase is interpreted as a steady-state where vesicle exocytosis is balanced by the rate of vesicle reformation from plasma membrane. During quiescent recovery, restoration of normal resting ultrastructure is initially rapid but slows with time as vesicle number and plasma membrane abundance approach pre-stimulation values, indicating that the rate of vesicle reformation at the end of stimulation is high and proportional to the number of vesicles incorporated into the plasma membrane. These results are interpreted as consistent with the 'vesicle hypothesis' of neurotransmitter release.
Journal of Cell Science, 2012
Following the exocytosis of neurotransmitter-containing synaptic vesicles, endocytosis is fundamental to re-establishing conditions for synaptic transmission. As there are distinct endocytotic pathways that each differ in their efficiency to generate releasable synaptic vesicles, we used the dye FM1-43 to track vesicle recycling, and to determine whether nerve terminals use multiple pathways of endocytosis. We identified two types of synaptic boutons in cultured cerebellar granule cells that were characterized by weak or strong FM1-43-unloading profiles. Decreasing the extent of exocytosis dramatically increased the proportion of synaptic boutons that exhibited strong FM1-43-unloading and dramatically reduced the number of endosome-like structures. Hence, we concluded that efficient recycling of synaptic vesicles is concomitant with the formation of non-releasable endosomes in both types of synaptic boutons, although to different extents. Furthermore, cell maturation in culture increased the proportion of synaptic boutons that were capable of an intense release response, whereas the chronic blockage of synaptic activity diminished the capacity of boutons to release dye. by either a weak or a strong loss of FM1-43. Endocytosis in both subsets of nerve terminals was sensitive to the dynamin inhibitor dynasore, which completely prevented dye unloading and dramatically diminished the number of synaptic vesicles. Decreasing the intensity of exocytosis increased the proportion of synaptic boutons that lose large amounts of dye and reduced the presence of endosome-like structures. Together, these findings demonstrate that efficient vesicle-recycling pathways coexist with those pathways that involve the formation of non-releasable endosomes in synaptic boutons, although in different proportions.
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals
Frontiers in Synaptic Neuroscience, 2016
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.