Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle (original) (raw)

Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms

Developmental Biology, 1983

Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, P-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both a-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to o-fast and P-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains, Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.

Fast myosin light chain expression in chicken muscles studied by in situ hybridization

Journal of Histochemistry & Cytochemistry, 1992

We have studied the fiber type-specific expression of the fast myosin light chain isoforms LC 1f, LC 2f, and LC 3f in adult chicken muscles using in situ hybridization and two-dimensional gel electrophoresis. Type II (fast) fibers contain all three fast myosin light chain mRNAs; Types I and III (slow) fibers lack them. The myosin light chain patterns of two-dimensional gels from microdissected single fibers match their mRNA signals in the in situ hybridizations. The results confirm and extend previous studies on the fiber type-specific distribution of myosin light chains in chicken muscles which used specific antibodies. The quantitative ratios between protein and mRNA content were not the same for all three fast myosin light chains, however. In bulk muscle samples, as well as in single fibers, there was proportionally less LC 3f accumulated for a given mRNA concentration than LC 1f or LC 2f. Moreover, the ratio between LC 3f mRNA and protein was different in samples from muscles, i...

Persistent expression of developmental myosin heavy chain isoforms in the tapered ends of adult pigeon pectoralis muscle fibres

The Histochemical journal, 1999

We have shown previously that in addition to the adult myosin heavy chain (MyHC) isoform present throughout the length of each fast-twitch glycolytic muscle fibre within the pectoralis of the mature chicken, the neonatal isoform is retained in the tapered ends of these fibres. This work, however, has been the only published report of this phenomenon. Here, we tested the hypothesis that similar to the chicken, the ends of mature pigeon pectoralis muscle fibres contain developmental MyHC isoform(s). A histological stain was used to visualize endomysium to assist in the analysis of transverse sections of pectoralis muscle from four mature pigeons. Immunocytochemical techniques were used to localize MyHC isoform(s) characteristic of pigeon pectoralis development. We show that within mature pigeon pectoralis, the ends of both fast-twitch glycolytic and fast-twitch oxidative-glycolytic fibre types express MyHC isoform(s) characteristic of their earlier development. Thus, we extend our fin...

Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers

Mechanisms of Development, 1996

The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SMl and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.

Repression of myosin isoforms in developing and denervated skeletal muscle fibers originates near motor endplates

Developmental Dynamics, 2000

During development of chicken pectoralis muscle, a neonatal myosin heavychain isoform is supplanted progressively by an adult isoform. This expression is under neuronal control. In this study we test the hypothesis that developmental myosin transformations are initiated near the motor endplate of each muscle fiber, thereafter progressing toward the fiber ends. By using immunocytochemical methods, pectoralis muscle from chickens aged 1-115 days after hatching were labeled by antibody against neonatal isoform. Ellipse minor axis and mean optical density of labeled and/or unlabeled fiber profiles from each bird were measured by computer image analysis. Acetylcholinesterase (AChE) activity was demonstrated histochemically. Using serial cross sections, we show that smaller fiber profiles are the tapered ends of larger fiber profiles. The largest fiber profiles (central regions of the fibers) were the first to lose their neonatal myosin during development. Motor endplates were localized by AChE activity to the central regions of the fibers. The pectoralis of mature chickens was denervated for 3, 7, 15, or 21 days. After 2 weeks' denervation, neonatal myosin is first reexpressed in the fiber ends. Dev Dyn 2000;217:50 -61.

Contractile protein isozymes in muscle development: identification of an embryonic form of myosin heavy chain

Proceedings of the National Academy of Sciences, 1979

The nature of the myosin heavy chain in embryonic muscle tissue, cultured muscle cells, and several adult muscles was investigated. After denaturation with sodium dodecyl sulfate, purified rat myosins were subjected to partial proteolytic cleavage or immunological analysis using microcomplement fixation. Three types of myosin heavy chains could be demonstrated by both approaches. Whereas adult muscles contain fast- or slow-type myosin heavy chains, embryonic tissue and cultured muscle cells harbor a distinct embryonic form. The existence of this distinct form further characterizes the isozymic transitions of contractile proteins during muscle development.