Affinity and Sequence Specificity of DNA Binding and Site Selection for Primer Synthesis by Escherichia coli Primase † (original) (raw)

Affinity and Sequence Specificity of DNA Binding and Site Selection for Primer Synthesis by Escherichia coli Primase

Biochemistry, 2002

Primase is an essential DNA replication enzyme in Escherichia coli and responsible for primer synthesis during lagging strand DNA replication. Although the interaction of primase with single-stranded DNA plays an important role in primer RNA and Okazaki fragment synthesis, the mechanism of DNA binding and site selection for primer synthesis remains unknown. We have analyzed the energetics of DNA binding and the mechanism of site selection for the initiation of primer RNA synthesis on the lagging strand of the replication fork. Quantitative analysis of DNA binding by primase was carried out using a number of oligonucleotide sequences: oligo(dT) 25 and a 30 bp oligonucleotide derived from bacteriophage G4 origin (G4ori-wt). Primase bound both sequences with moderate affinity (K d) 1.2-1.4 × 10-7 M); however, binding was stronger for G4ori-wt. G4ori-wt contained a CTG trinucleotide, which is a preferred site for initiation of primer synthesis. Analysis of DNA binding isotherms derived from primase binding to the oligonucleotide sequences by fluorescence anisotropy indicated that primase bound to DNA as a dimer, and this finding was further substantiated by electrophoretic mobility shift assays (EMSAs) and UV cross-linking of the primase-DNA complex. Dissection of the energetics involved in the primase-DNA interaction revealed a higher affinity of primase for DNA sequences containing the CTG triplet. This sequence preference of primase may likely be responsible for the initiation of primer synthesis in the CTG triplet sites in the E. coli lagging strand as well as in the origin of replication of bacteriophage G4.

Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: contributions of RNA polymerase and primase

Proceedings of the National Academy of Sciences, 1985

Replication of plasmids that depend on the 245-base-pair origin of the Escherichia coli chromosome (oriC) requires many purified proteins that (i) direct initiation to oriC (e.g., dnaA protein), (ii) influence initiations elsewhere (e.g., auxiliary proteins), and (iii) prime and extend DNA chains (e.g., priming and synthesis proteins). For the RNA priming and initiation of new DNA chains, the requirements for both primase and RNA polymerase (RNA pol) [Kaguni, J. M. & Kornberg, A. (1984) Cell 38, 183-190] have been further analyzed. Depending on the levels of auxiliary proteins (topoisomerase I and protein HU), three priming systems can operate: primase alone, RNA pol alone, or both combined. At low levels of auxiliary proteins, primase alone sustains an effective priming system. At higher levels, primase action is blocked, but RNA pol alone can initiate replication, albeit feebly; at these high levels of auxiliary proteins, primase and RNA pol act synergistically. When RNA pol is st...

Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system

Journal of molecular …, 2010

We have biochemically characterized the bacterial-like DnaG primase contained within the hyperthermophilic crenarchaeon Sulfolobus solfataricus (Sso) and compared in vitro priming kinetics with those of the eukaryotictype primase (PriSL) also found in Sso. SsoDnaG exhibited metal-and temperature-dependent profiles consistent with priming at high temperatures. The distribution of primer products was discrete but highly similar to the distribution of primer products produced by the homologous Escherichia coli DnaG. The predominate primer length was 13 bases, although less abundant products are present. SsoDnaG was found to bind DNA cooperatively as a dimer with a moderate dissociation constant. Mutation of the conserved glutamate in the active site severely inhibited priming activity, suggesting a functional homology with E. coli DnaG. SsoDnaG was also found to have a greater than fourfold faster rate of DNA priming over that of SsoPriSL under optimal in vitro conditions. The presence of both enzymatically functional primase families in archaea suggests that the DNA priming role may be shared on leading or lagging strands during DNA replication.

Bacterial homologs of the small subunit of eukaryotic DNA primase

2000

Primases are RNA polymerases that synthesize the primer RNA that provides the 3'OH for strand elongation by DNA polymerases (Kornberg and Baker, 1992). Currently, three independent classes of primases are recognized. The best characterized of these are the DnaG-like proteins, which function as replicative primases in bacteria and some bacteriophages, and also have highly conserved homologs, whose function remains unknown, in all archaeal genomes sequenced to date (Aravind et al., 1998).

bacteriophage T4 primase

1995

The rolling circle DNA replication structures generated by the in vitro phage T4 replication system were analyzed using two-dimensional agarose gels. Replication structures were generated in the presence or absence of T4 primase (gp61), permitting the analysis of replication forks with either duplex or singlestranded tails. A characteristic arc shape was visualized when forks with single-stranded tails were cleaved by a restriction enzyme with the help of an oligonucleotide that anneals to restriction sites in the single-stranded tail. After calibrating the gel system with this well-studied rolling circle replication reaction, we then analyzed the in vivo replication directed by a T4 replication origin cloned within a plasmid. DNA samples were generated from infections with either wild-type or primase-deletion mutant phage. The only replicative arc that could be detected in the wild-type sample corresponded to duplex Y forms, consistent with very efficient lagging strand synthesis. Surprisingly, we obtained evidence for both duplex and single-stranded DNA tails in the samples from the primase-deficient infection. We conclude that a relatively inefficient mechanism primes lagging strand DNA synthesis in vivo when gp61 is absent.

Structural Insight into the Specific DNA Template Binding to DnaG primase in Bacteria

Scientific reports, 2017

Bacterial primase initiates the repeated synthesis of short RNA primers that are extended by DNA polymerase to synthesize Okazaki fragments on the lagging strand at replication forks. It remains unclear how the enzyme recognizes specific initiation sites. In this study, the DnaG primase from Bacillus subtilis (BsuDnaG) was characterized and the crystal structure of the RNA polymerase domain (RPD) was determined. Structural comparisons revealed that the tethered zinc binding domain plays an important role in the interactions between primase and specific template sequence. Structural and biochemical data defined the ssDNA template binding surface as an L shape, and a model for the template ssDNA binding to primase is proposed. The flexibility of the DnaG primases from B. subtilis and G. stearothermophilus were compared, and the results implied that the intrinsic flexibility of the primase may facilitate the interactions between primase and various partners in the replisome. These resu...

Characterization of a Novel DNA Primase from the Salmonella typhimurium Bacteriophage SP6 †

Biochemistry, 2000

The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribonucleotide synthesis. In reactions containing only GTP and CTP, SP6 primase incorporates GTP at the 5′-end of oligoribonucleotides and CMP at the second position. On synthetic DNA templates, pppGpC dinucleotides are synthesized most rapidly in the presence of the sequence 5′-GCA-3′. This trinucleotide sequence, containing a cryptic dA at the 3′-end, differs from other known bacterial and phage primase recognition sites. SP6 primase shares some properties with the well-characterized E. coli bacteriophage T7 primase. The T7 DNA polymerase can use oligoribonucleotides synthesized by SP6 primase as primers for DNA synthesis. However, oligoribonucleotide synthesis by SP6 primase is not stimulated by either the E. coli-or the T7-encoded ssDNA binding protein. An amino acid sequence alignment of the SP6 and T7 primases, which share only 22.4% amino acid identity, indicates amino acids likely critical for oligoribonucleotide synthesis as well as a putative Cys 3 His zinc finger motif that may be involved in DNA binding.

Primer initiation and extension by T7 DNA primase

The EMBO Journal, 2006

T7 DNA primase is composed of a catalytic RNA polymerase domain (RPD) and a zinc-binding domain (ZBD) connected by an unstructured linker. The two domains are required to initiate the synthesis of the diribonucleotide pppAC and its extension into a functional primer pppACCC (de novo synthesis), as well as for the extension of exogenous AC diribonucleotides into an ACCC primer (extension synthesis). To explore the mechanism underlying the RPD and ZBD interactions, we have changed the length of the linker between them. Wild-type T7 DNA primase is 10-fold superior in de novo synthesis compared to T7 DNA primase having a shorter linker. However, the primase having the shorter linker exhibits a twofold enhancement in its extension synthesis. T7 DNA primase does not catalyze extension synthesis by a ZBD of one subunit acting on a RPD of an adjacent subunit (trans mode), whereas de novo synthesis is feasible in this mode. We propose a mechanism for primer initiation and extension based on these findings.