Mass Spectrometric Imaging of the Brain Demonstrates the Regional Displacement of 6-Monoacetylmorphine by Naloxone (original) (raw)

Abstract

Overdose is the main cause of mortality among heroin users. Many of these overdose-induced deaths can be prevented through the timely administration of naloxone (NLX), a nonselective mu (μ)-, kappa (κ)-, and delta (δ)-opioid receptor antagonist. NLX competitively inhibits opioid-overdose-induced respiratory depression without eliciting any narcotic effect itself. The aim of this study was to investigate the antagonistic action of NLX by comparing its distribution to that of 6-monacetylmorphine (6-MAM), heroin's major metabolite, in a rodent model using mass spectrometric imaging (MSI) in combination with liquid chromatography−tandem mass spectrometry (LC−MS/MS). Male Sprague−Dawley rats (n = 5) received heroin (10 mg kg −1) intraperitoneally, NLX (10 mg kg −1) intranasally, and NLX injected intranasally 5 min after heroin administration. The animals were sacrificed 15 min after dose and brain tissues were harvested. The MSI image analysis showed a region-specific distribution of 6-MAM in the brain regions including the corpus callosum, hippocampal formation, cerebral cortex, corticospinal tracts, caudate putamen, thalamus, globus pallidus, hypothalamus, and basal forebrain regions of the brain. The antagonist had a similar biodistribution throughout the brain in both groups of animals that received NLX or NLX after heroin administration. The MSI analysis demonstrated that the intensity of 6-MAM in these brain regions was reduced following NLX treatment. The decrease in 6-MAM intensity was caused by its displacement by the antagonist and its binding to these receptors in these specific brain regions, consequently enhancing the opioid elimination. These findings will contribute to the evaluation of other narcotic antagonists that might be considered for use in the treatment of drug overdose via MSI.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (56)

  1. Management of Substance Abuse. http://www.who.int/ substance_abuse/information-sheet/en/ (accessed Sept. 23).
  2. Drug Overdose Deaths in the United States Continue to Increase in 2015. https://www.cdc.gov/drugoverdose/epidemic/ index.html (accessed Sept. 15).
  3. Heroin Overdose Data. https://www.cdc.gov/drugoverdose/ data/heroin.html. (accessed Sept. 24).
  4. White, J. M.; Irvine, R. J. Mechanisms of fatal opioid overdose. Addiction 1999, 94, 961-972.
  5. Shook, J. E.; Watkins, W. D.; Camporesi, E. M. Differential roles of opioid receptors in respiration, respiratory disease, and opiate- induced respiratory depression. Am. Rev. Respir. Dis. 1990, 142, 895- 909.
  6. Pattinson, K. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747-758.
  7. Sporer, K. A. Acute Heroin Overdose. Ann. Intern. Med. 1999, 130, 584-590.
  8. Nakamura, G. R. Toxicologic assessments in acute heroin fatalities. Clin. Toxicol. 1978, 13, 75-87.
  9. Miller, P. M. Principles of Addiction: Comprehensive Addictive Behaviors and Disorders; Academic Press, 2013; pp 160-169.
  10. Gable, R. S. Comparison of acute lethal toxicity of commonly abused psychoactive substances. Addiction 2004, 99, 686-696.
  11. Darke, S.; Ross, J.; Zador, D.; Sunjic, S. Heroin-related deaths in New South Wales, Australia. 1992-1996. Drug Alcohol Depend. 2000, 60, 141-150.
  12. Lobmaier, P.; Gossop, M.; Waal, H.; Bramness, J. The pharmacological treatment of opioid addiction -a clinical perspective. Eur. J. Clin. Pharmacol. 2010, 66, 537-545.
  13. van Dorp, E. L.; Yassen, A.; Dahan, A. Naloxone treatment in opioid addiction: the risks and benefits. Expert Opin. Drug Saf. 2007, 6, 125-132.
  14. Seal, K. H.; Thawley, R.; Gee, L.; Bamberger, J.; Kral, A. H.; Ciccarone, D.; Downing, M.; Edlin, B. R. Naloxone distribution and cardiopulmonary resuscitation training for injection drug users to prevent heroin overdose death: a pilot intervention study. J. Urban Health 2005, 82, 303-311.
  15. Burris, S.; Norland, J.; Edlin, B. R. Legal aspects of providing naloxone to heroin users in the United States. Int. J. Drug Policy 2001, 12, 237-248.
  16. Fink, M.; Zaks, A.; Sharoff, R.; Mora, A.; Bruner, A.; Levit, S.; Freedman, A. M. Naloxone in heroin dependence. Clin. Pharmacol. Ther. 1968, 9, 568-577.
  17. Fareed, A.; Buchanan-Cummings, A. M.; Crampton, K.; Grant, A.; Drexler, K. Reversal of overdose on fentanyl being illicitly sold as heroin with naloxone nasal spray: A case report. Am. J. Addict. 2015, 24, 388-390.
  18. Lewanowitsch, T.; Miller, J. H.; Irvine, R. J. Reversal of morphine, methadone and heroin induced effects in mice by naloxone methiodide. Life Sci. 2006, 682-688.
  19. Berkowitz, B. A. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin. Pharmacokinet. 1976, 1, 219-230.
  20. Ngai, S. H.; Berkowitz, B. A.; Yang, J.; Hempstead, J.; Spector, S. Pharmacokinetics of naloxone in rats and in man: basis for its potency and short duration of action. Anesthesiology 1976, 44, 398- 401.
  21. Fishman, J.; Roffwarg, H.; Hellman, L. Disposition of naloxone- 7,8-3H in normal and narcotic-dependent men. J. Pharmacol. Exp. Ther. 1973, 187, 575-580.
  22. Sabzghabaee, A. M.; Eizadi-Mood, N.; Yaraghi, A.; Zandifar, S. Naloxone therapy in opioid overdose patients: intranasal or intravenous? A randomized clinical trial. Arch. Med. Sci. 2014, 10, 309-314.
  23. Dale, O.; Hjortkjaer, R.; Kharasch, E. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol. Scand. 2002, 46, 759-770.
  24. Wolfe, T. R.; Bernstone, T. Intranasal drug delivery: an alternative to intravenous administration in selected emergency cases. J. Emerg. Nurs. 2004, 30, 141-147.
  25. Hussain, A.; Kimura, R.; Chong-Heng, H.; Kashihara, T. Nasal absorption of naloxone and buprenorphine in rats. Int. J. Pharm. 1984, 21, 233-237.
  26. Loimer, N.; Hofmann, P.; Chaudhry, H. Nasal administration of naloxone is as effective as the intravenous route in opiate addicts. Int. J. Addict. 1994, 29, 819-827.
  27. Melichar, J. K.; Nutt, D. J.; Malizia, A. L. Naloxone displacement at opioid receptor sites measured in vivo in the human brain. Eur. J. Pharmacol. 2003, 459, 217-219.
  28. Darke, S.; Hall, W. The distribution of naloxone to heroin users. Addiction 1997, 92, 1195-1200.
  29. Rook, E. J.; Huitema, A. D.; van den Brink, W.; van Ree, J. M.; Beijnen, J. H. Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature. Curr. Clin. Pharmacol. 2006, 1, 109-118.
  30. Inturrisi, C. E.; Schultz, M.; Shin, S.; Umans, J.; Angel, L.; Simon, E. Evidence from opiate binding studies that heroin acts through its metabolites. Life Sci. 1983, 33, 773-776.
  31. Teklezgi, B. G.; Pamreddy, A.; Baijnath, S.; Gopal, N. D.; Naicker, T.; Kruger, H. G.; Govender, T. Post heroin dose tissue distribution of 6-monoacetylmorphine (6-MAM) with MALDI imaging. J. Mol. Histol. 2017, 48, 285-292.
  32. Andersen, J. M.; Ripel, Å.; Boix, F.; Normann, P. T.; Mørland, J. Increased locomotor activity induced by heroin in mice: pharmacokinetic demonstration of heroin acting as a prodrug for the mediator 6-monoacetylmorphine in vivo. J. Pharmacol. Exp. Ther. 2009, 331, 153-161.
  33. Tepperman, F.; Hirst, M.; Smith, P. Brain and serum levels of naloxone following peripheral administration. Life Sci. 1983, 33, 1091-1096.
  34. Berkowitz, B. A.; Ngai, S.; Hempstead, J.; Spector, S. Disposition of naloxone: use of a new radioimmunoassay. J. Pharmacol. Exp. Ther. 1975, 195, 499-504.
  35. Teklezgi, B. G.; Pamreddy, A.; Baijnath, S.; Gopal, N. D.; Naicker, T.; Kruger, H. G.; Govender, T. Time dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction. Addict. Biol. 2019, 24, 438-446.
  36. E.M.A. Guideline on Bioanalytical Method Validation. http:// www.ema.europa.eu/docs/en\_GB/document\_library/Scientific\_ guideline/2011/08/WC500109686.pdf (accessed Sept. 22).
  37. Saccone, P. A.; Lindsey, A. M.; Koeppe, R. A.; Zelenock, K. A.; Shao, X.; Sherman, P.; Quesada, C. A.; Woods, J. H.; Scott, P. J. Intranasal opioid administration in rhesus monkeys: PET imaging and antinociception. J. Pharmacol. Exp. Ther. 2016, 359, 366-373.
  38. Gottås, A.; Øiestad, E.; Boix, F.; Vindenes, V.; Ripel, Å.; Thaulow, C.; Mørland, J. Levels of heroin and its metabolites in blood and brain extracellular fluid after iv heroin administration to freely moving rats. Br. J. Pharmacol. 2013, 170, 546-556.
  39. Misra, A.; Pontani, R.; Vadlamani, N.; Mule, S. Physiological disposition and biotransformation of [allyl-1′,3′-14C naloxone in the rat and some comparative observations on nalorphine. J. Pharmacol. Exp. Ther. 1976, 196, 257-268.
  40. Barton, E. D.; Colwell, C. B.; Wolfe, T.; Fosnocht, D.; Gravitz, C.; Bryan, T.; Dunn, W.; Benson, J.; Bailey, J. Efficacy of intranasal naloxone as a needleless alternative for treatment of opioid overdose in the prehospital setting. J. Emerg. Med. 2005, 29, 265-271.
  41. Mansour, A.; Khachaturian, H.; Lewis, M.; Akil, H.; Watson, S. Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J. Neurosci. 1987, 7, 2445-2464.
  42. Wamsley, J. K. Opioid receptors: autoradiography. Pharmacol. Rev. 1983, 35, 69-83.
  43. Trusk, T. C.; Stein, E. A. Effect of intravenous heroin and naloxone on regional cerebral blood flow in the conscious rat. Brain Res. 1987, 406, 238-245.
  44. Geary, W.; Wooten, G. Quantitative film autoradiography of opiate agonist and antagonist binding in rat brain. J. Pharmacol. Exp. Ther. 1983, 225, 234-240.
  45. Xi, Z. X.; Wu, G.; Stein, E. A.; Li, S. J. GABAergic mechanisms of heroin-induced brain activation assessed with functional MRI. Magn. Reson. Med. 2002, 48, 838-843.
  46. Xu, H.; L, S.; Bodurka, J.; Zhao, X.; Xi, Z. X.; Stein, E. A. Heroin-induced neuronal activation in rat brain assessed by functional MRI. NeuroReport 2000, 11, 1085-1092.
  47. Volavka, J.; Zaks, A.; Roubicek, J.; Fink, M. Electrographic effects of diacetylmorphine (heroin) and naloxone in man. Neuro- pharmacology 1970, 9, 587-593.
  48. Frost, J. J.; Wagner, H. N., Jr.; Dannals, R. F.; Ravert, H. T.; Links, J. M.; Wilson, A. A.; Burns, H. D.; Wong, D. F.; McPherson, R. W.; Rosenbaum, A. E.; et al. Imaging opiate receptors in the human brain by positron tomography. J. Comput. Assist. Tomogr. 1985, 9, 231-236.
  49. Chen, Z.; Eldridge, F. L.; Wagner, P. G. Respiratory-associated thalamic activity is related to level of respiratory drive. Respir. Physiol. Neurobiol. 1992, 90, 99-113.
  50. Banzett, R. B.; Mulnier, H. E.; Murphy, K.; Rosen, S. D.; Wise, R. J.; Adams, L. Breathlessness in humans activates insular cortex. NeuroReport 2000, 11, 2117-2120.
  51. Stowe, G. N.; Schlosburg, J. E.; Vendruscolo, L. F.; Edwards, S.; Misra, K. K.; Schulteis, G.; Zakhari, J. S.; Koob, G. F.; Janda, K. D. Developing a vaccine against multiple psychoactive targets: a case study of heroin. CNS Neurol. Disord.: Drug Targets 2011, 10, 865- 875.
  52. Le Merrer, J.; Becker, J. A.; Befort, K.; Kieffer, B. L. Reward processing by the opioid system in the brain. Physiol. Rev. 2009, 89, 1379-1412.
  53. Yadav, S.; Gattacceca, F.; Panicucci, R.; Amiji, M. M. Comparative biodistribution and pharmacokinetic analysis of cyclo- sporine-A in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol. Pharm. 2015, 12, 1523-1533.
  54. Jones, J. M.; Raleigh, M. D.; Pentel, P. R.; Harmon, T. M.; Keyler, D. E.; Remmel, R. P.; Birnbaum, A. K. Stability of heroin, 6- monoacetylmorphine, and morphine in biological samples and validation of an LC-MS assay for delayed analyses of pharmacoki- netic samples in rats. J. Pharm. Biomed. Anal. 2013, 74, 291-297.
  55. Pamreddy, A.; Baijinath, S.; Naicker, T.; Ntshangase, S.; Mdanda, S.; Lubanyana, H.; Kruger, H. G.; Govender, T. Bedaquiline has potential for targeting Tuberculosis reservoirs in the central nervous system. RSC Adv. 2018, 8, 11902-11907.
  56. Shobo, A.; Pamreddy, A.; Kruger, H. G.; Makatini, M. M.; Naicker, T.; Govender, T.; Baijnath, S. Enhanced brain penetration of Pretomanid by intranasal administration of an oil-in-water nano- emulsion. Nanomedicine 2018, 13, 997-1008.