Geometry of Black Hole Thermodynamics (original) (raw)
Abstract
The Hessian of the entropy function can be thought of as a metric tensor on the state space. In the context of thermodynamical fluctuation theory Ruppeiner has argued that the Riemannian geometry of this metric gives insight into the underlying statistical mechanical system; the claim is supported by numerous examples. We study this geometry for some families of black holes. It is flat for the BTZ and Reissner-Nordström black holes, while curvature singularities occur for the Reissner-Nordström-anti-de Sitter and Kerr black holes.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- G. Ruppeiner, Phys. Rev. A20 (1979) 1608.
- L. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Lon- don 1980.
- G. Ruppeiner, Rev. Mod. Phys. 67 (1995) 605; 68 (1996) 313(E).
- R. Mruga la, Physica 125A (1984) 631.
- P. Salamon, J. D Nulton and R. S. Berry, J. Chem. Phys. 82 (1985) 2433.
- D. C. Brody and A. Ritz, Geometric phase transitions, cond- mat/9903168.
- N. N. Čencov, Statistical Decision Rules and Optimal Inference, Amer. Math. Soc., Providence 1982.
- T. Padmanabhan, Phys. Rep. 188 (1990) 285.
- S. Ferrara, G. W. Gibbons and R. Kallosh, Nucl. Phys. B500 (1997) 75.
- P. C. W. Davies, Proc. R. Soc. Lond. A353 (1977) 499.
- F. Weinhold, J. Chem. Phys. 63 (1975) 2479.
- P. Salamon, J. D. Nulton and E. Ihrig, J. Chem. Phys. 80 (1984) 436.
- S. W. Hawking and D. N. Page, Comm. Math. Phys. 87 (1983) 577.
- J. Louko and S. N. Winters-Hilt, Phys. Rev. D54 (1996) 2647.
- A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. D60 (1999) 104026.
- J. E. Åman, "Manual for classi: Classification Programs for Geome- tries in General Relativity", ITP, Stockholm University, Technical Re- port, 2002. Provisional edition. Distributed with the sources for sheep and classi.
- M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849.
- M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Phys. Rev. D48 (1993) 1506.