Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease (original) (raw)

Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise

American journal of physiology. Regulatory, integrative and comparative physiology, 2014

Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors invol...

Regulation of autophagy in human skeletal muscle - Effects of exercise, exercise training and insulin stimulation

The Journal of physiology, 2015

Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (p<0.01) lipidation of LC3 (∼50 %) and the LC3-II/LC3-I ratio (∼60 %) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p<0.01) the LC3-II/LC3-I ratio (∼80%) in muscle of the exercised and non-exercised leg in man. This coincided with...

Autophagy in skeletal muscle

FEBS Letters, 2010

Muscle mass represents 40-50% of the human body and, in mammals, is one of the most important sites for the control of metabolism. Moreover, during catabolic conditions, muscle proteins are mobilized to sustain gluconeogenesis in the liver and to provide alternative energy substrates for organs. However, excessive protein degradation in the skeletal muscle is detrimental for the economy of the body and it can lead to death. The ubiquitin-proteasome and autophagy-lysosome systems are the major proteolytic pathways of the cell and are coordinately activated in atrophying muscles. However, the role and regulation of the autophagic pathway in skeletal muscle is still largely unknown. This review will focus on autophagy and discuss its beneficial or detrimental role for the maintenance of muscle mass.

Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state

AJP: Endocrinology and Metabolism, 2013

Activation of autophagy in skeletal muscle has been reported in response to endurance exercise and food deprivation independently. The purpose of this study was to evaluate whether autophagy was more activated when both stimuli were combined, namely when endurance exercise was performed in a fasted rather than a fed state. Mice performed a lowintensity running exercise (10 m/min for 90min) in both dietary states after which the gastrocnemius muscles were removed. LC3b-II, a marker of autophagosome presence, increased in both conditions, but the increase was higher in the fasted state. Other protein markers of autophagy, like Gabarapl1-II and Atg12 conjugated form as well as mRNA of Lc3b, Gabarapl1, and p62/Sqstm1 were increased only when exercise was performed in a fasted state. The larger activation of autophagy by exercise in a fasted state was associated with a larger decrease in plasma insulin and phosphorylation of Akt Ser473 , Akt Thr308 , FoxO3a Thr32 , and ULK1 Ser757 . AMPK␣ Thr172 , ULK1 Ser317 , and ULK1 Ser555 remained unchanged in both conditions, whereas p38 Thr180/Tyr182 increased during exercise to a similar extent in the fasted and fed conditions. The marker of mitochondrial fission DRP1 Ser616 was increased by exercise independently of the nutritional status. Changes in mitophagy markers BNIP3 and Parkin suggest that mitophagy was increased during exercise in the fasted state. In conclusion, our results highlight a major implication of the insulin-Akt-mTOR pathway and its downstream targets FoxO3a and ULK1 in the larger activation of autophagy observed when exercise is performed in a fasted state compared with a fed state.

Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy

AJP: Cell Physiology, 2010

Loss of muscle mass aggravates a variety of diseases, and understanding the molecular mechanisms that control muscle wasting is critical for developing new therapeutic approaches. Weakness is caused by loss of muscle proteins, and recent studies have underlined a major role for the autophagy-lysosome system in regulating muscle mass. Some key components of the autophagy machinery are transcriptionally upregulated during muscle wasting, and their induction precedes muscle loss. However, it is unclear whether autophagy is detrimental, causing atrophy, or beneficial, promoting survival during catabolic conditions. This review discusses recent findings on signaling pathways regulating autophagy.

Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2015

In humans, nutrient deprivation and extreme endurance exercise both activate autophagy. We hypothesized that cumulating fasting and cycling exercise would potentiate activation of autophagy in skeletal muscle. Well-trained athletes were divided into control (n = 8), low-intensity (LI, n = 8), and high-intensity (HI, n = 7) exercise groups and submitted to fed and fasted sessions. Muscle biopsy samples were obtained from the vastus lateralis before, at the end, and 1 h after a 2 h LI or HI bout of exercise. Phosphorylation of ULK1(Ser317) was higher after exercise (P < 0.001). In both the fed and the fasted states, LC3bII protein level and LC3bII/I were decreased after LI and HI (P < 0.05), while p62/SQSTM1 was decreased only 1 h after HI (P < 0.05), indicating an increased autophagic flux after HI. The autophagic transcriptional program was also activated, as evidenced by the increased level of LC3b, p62/SQSTM1, GabarapL1, and Cathepsin L mRNAs observed after HI but not aft...

Modulation of Autophagy Signaling with Resistance Exercise and Protein Ingestion Following Short-Term Energy Deficit

American journal of physiology. Regulatory, integrative and comparative physiology, 2015

Autophagy contributes to remodeling of skeletal muscle and is sensitive to contractile activity and prevailing energy availability. We investigated changes in targeted genes and proteins with roles in autophagy following 5 days of energy balance (EB), energy deficit (ED) and resistance exercise (REX) after ED. Muscle biopsies from 15 subjects (8 males, 7 females) were taken at rest following 5 days of EB [45 kcal∙kg fat free mass (FFM)(-1)∙day(-1)] and 5 days of ED (30 kcal∙kg FFM(-1)∙day(-1)). After ED, subjects completed a bout of REX and consumed either placebo (PLA) or 30 g whey protein (PRO) immediately post-exercise. Muscle biopsies were obtained at 1 and 4 h into recovery in each trial. Resting protein levels of autophagy-related gene protein 5 (Atg5) decreased after ED compared to EB (~23%, P<0.001) and remained below EB from 1-4 h post-exercise in PLA (~17%) and at 1 h in PRO (~18%, P<0.05). In addition, conjugated Atg5 (cAtg12) decreased below EB in PLA at 4 h (~20, ...

Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles

Autophagy, 2011

Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1-/-) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1-/mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1-/muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.

Autophagy Is Required to Maintain Muscle Mass

Cell Metabolism, 2009

The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches.