Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy (original) (raw)

Genetic Analysis of the Role of Peroxisomes in the Utilization of Acetate and Fatty Acids in Aspergillus nidulans

Genetics, 2008

Peroxisomes are organelles containing a diverse array of enzymes. In fungi they are important for carbon source utilization, pathogenesis, development, and secondary metabolism. We have studied Aspergillus nidulans peroxin (pex) mutants isolated by virtue of their inability to grow on butyrate or by the inactivation of specific pex genes. While all pex mutants are able to form colonies, those unable to import PTS1 proteins are partially defective in asexual and sexual development. The pex mutants are able to grow on acetate but are affected in growth on fatty acids, indicating a requirement for the peroxisomal localization of β-oxidation enzymes. However, mislocalization of malate synthase does not prevent growth on either fatty acids or acetate, showing that the glyoxylate cycle does not require peroxisomal localization. Proliferation of peroxisomes is dependent on fatty acids, but not on acetate, and on PexK (Pex11), expression of which is activated by the FarA transcription facto...

The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional -oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane

Microbiology-sgm, 2008

The glyoxylate cycle, a metabolic pathway required for generating C 4 units from C 2 compounds, is an important factor in virulence, in both animal and plant pathogens. Here, we report the localization of the key enzymes of this cycle, isocitrate lyase (Icl1; EC 4.1.3.1) and malate synthase (Mls1; EC 2.3.3.9), in the human fungal pathogen Candida albicans. Immunocytochemistry in combination with subcellular fractionation showed that both Icl1 and Mls1 are localized to peroxisomes, independent of the carbon source used. Although Icl1 and Mls1 lack a consensus type I peroxisomal targeting signal (PTS1), their import into peroxisomes was dependent on the PTS1 receptor Pex5p, suggesting the presence of non-canonical targeting signals in both proteins. Peroxisomal compartmentalization of the glyoxylate cycle is not essential for proper functioning of this metabolic pathway because a pex5D/D strain, in which Icl1 and Mls1 were localized to the cytosol, grew equally as well as the wild-type strain on acetate and ethanol. Previously, we reported that a fox2D/D strain that is completely deficient in fatty acid boxidation, but has no peroxisomal protein import defect, displayed strongly reduced growth on non-fermentable carbon sources such as acetate and ethanol. Here, we show that growth of the fox2D/D strain on these carbon compounds can be restored when Icl1 and Mls1 are relocated to the cytosol by deleting the PEX5 gene. We hypothesize that the fox2D/D strain is disturbed in the transport of glyoxylate cycle products and/or acetyl-CoA across the peroxisomal membrane and discuss the possible relationship between such a transport defect and the presence of giant peroxisomes in the fox2D/D mutant.

Distribution of glyoxylate-cycle enzymes between microbodies and mitochondria in Aspergillus tamarii

Planta, 1976

The distribution of glyoxylate-cycle enzymes between microbodies and mitochondria was examined in ethanol-grown Aspergillus tamarii Kita. Particulate activities of catalase and the two glyoxylate bypass enzymes, malate synthase and isocitrate lyase, were localized in the microbodies. The microbodies had a buoyant density of about 1.23 g cm-3 after isopycnic centrifugation in linear sucrose gradients. Particulate activities of the other two glyoxycitrate synthase, together with that of succinate dehydrogenase were restricted to the mitochondria, which had a buoyant density of about 1.20 g cm 3. Catalase also appeared to be localized in a second particle, perhaps the microbody inclusions or the Woronin bodies, having a buoyant density of about 1.26 g cm-3.

The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional β-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane

Microbiology, 2008

The glyoxylate cycle, a metabolic pathway required for generating C 4 units from C 2 compounds, is an important factor in virulence, in both animal and plant pathogens. Here, we report the localization of the key enzymes of this cycle, isocitrate lyase (Icl1; EC 4.1.3.1) and malate synthase (Mls1; EC 2.3.3.9), in the human fungal pathogen Candida albicans. Immunocytochemistry in combination with subcellular fractionation showed that both Icl1 and Mls1 are localized to peroxisomes, independent of the carbon source used. Although Icl1 and Mls1 lack a consensus type I peroxisomal targeting signal (PTS1), their import into peroxisomes was dependent on the PTS1 receptor Pex5p, suggesting the presence of non-canonical targeting signals in both proteins. Peroxisomal compartmentalization of the glyoxylate cycle is not essential for proper functioning of this metabolic pathway because a pex5D/D strain, in which Icl1 and Mls1 were localized to the cytosol, grew equally as well as the wild-type strain on acetate and ethanol. Previously, we reported that a fox2D/D strain that is completely deficient in fatty acid boxidation, but has no peroxisomal protein import defect, displayed strongly reduced growth on non-fermentable carbon sources such as acetate and ethanol. Here, we show that growth of the fox2D/D strain on these carbon compounds can be restored when Icl1 and Mls1 are relocated to the cytosol by deleting the PEX5 gene. We hypothesize that the fox2D/D strain is disturbed in the transport of glyoxylate cycle products and/or acetyl-CoA across the peroxisomal membrane and discuss the possible relationship between such a transport defect and the presence of giant peroxisomes in the fox2D/D mutant.

How Peroxisomes Affect Aflatoxin Biosynthesis in Aspergillus Flavus

PLoS ONE, 2012

In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids b-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal b-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal b-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids b-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.

Endogenous Lipogenic Regulators of Spore Balance in Aspergillus nidulans

Eukaryotic Cell, 2004

The ability of fungi to produce both meiospores and mitospores has provided adaptive advantages in survival and dispersal of these organisms. Here we provide evidence of an endogenous mechanism that balances meiospore and mitospore production in the model filamentous fungus Aspergillus nidulans. We have discovered a putative dioxygenase, PpoC, that functions in association with a previously characterized dioxygenase, PpoA, to integrate fatty acid derived oxylipin and spore production. In contrast to PpoA, deletion of ppoC significantly increased meiospore production and decreased mitospore development. Examination of the PpoA and PpoC mutants indicate that this ratio control is associated with two apparent feedback loops. The first loop shows ppoC and ppoA expression is dependent upon, and regulates the expression of, nsdD and brlA, genes encoding transcription factors required for meiospore or mitospore production, respectively. The second loop suggests Ppo oxylipin products antagonistically signal the generation of Ppo substrates. These data support a case for a fungal "oxylipin signature-profile" indicative of relative sexual and asexual spore differentiation.

Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes

Frontiers in physiology, 2013

It has long been regarded that the primary function of fungal peroxisomes is limited to the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in minimal medium containing fatty acids as the sole carbon source. However, studies in filamentous fungi have revealed that peroxisomes have diverse functional repertoires. This review describes the essential roles of peroxisomes in the growth and survival processes of filamentous fungi. One such survival mechanism involves the Woronin body, a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency reduces the ability of filamentous fungi to ...

Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans

Eukaryotic …, 2006

The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn 2-Cys 6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn 2-Cys 6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short-and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5 region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae.

AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae

Bioscience, biotechnology, and biochemistry, 2016

Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation...