Exploring Coevolution of Emotional Contagion and Behavior for Microblog Sentiment Analysis: A Deep Learning Architecture (original) (raw)
This paper aims to explore coevolution of emotional contagion and behavior for microblog sentiment analysis. Accordingly, a deep learning architecture (denoted as MSA-UITC) is proposed for the target microblog. Firstly, the coevolution of emotional contagion and behavior is described by the tie strength between microblogs, that is, with the spread of emotional contagion, user behavior such as emotional expression will be affected. Then, based on user interaction and the correlation with target microblog, the Hawkes process is adopted to quantify the tie strength between microblogs so as to build the corresponding weighted network. Secondly, in the weighted network, the Deepwalk algorithm is used to build the sequence representation of microblogs which are similar to the target microblog. Next, a CNN-BiLSTM-Attention network (the convolutional neural network and bidirectional long short-term memory network with a multihead attention mechanism) is designed to analyze the sentiment ana...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact