Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications (original) (raw)

Virus-like Particles: Fundamentals and Biomedical Applications

International Journal of Molecular Sciences

Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, dif...

Core-like Particles of an Enveloped Animal Virus Can Self-Assemble Efficiently on Artificial Templates

Nano Letters, 2007

Alphaviruses are animal viruses holding great promise for biomedical applications as drug delivery vectors, functional imaging probes, and nanoparticle delivery vesicles because of their efficient in vitro self-assembly properties. However, due to their complex structure, with a protein capsid encapsulating the genome and an outer membrane composed of lipids and glycoproteins, the in-vitro self-assembly of viruslike particles, which have the functional virus coat but carry an artificial cargo, can be challenging. Fabrication of such alphavirus-like particles is likely to require a two-step process: first, the assembly of a capsid structure around an artificial core, second the addition of the membrane layer. Here we report progress made on the first step: the efficient self-assembly of the alphavirus capsid around a functionalized nanoparticle core.

Applications of viral nanoparticles in medicine

Current Opinion in Biotechnology, 2011

Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally-occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic.

Virus-Inspired Design Principles of Nanoparticle-Based Bioagents

PLoS ONE, 2010

The highly effectiveness and robustness of receptor-mediated viral invasion of living cells shed lights on the biomimetic design of nanoparticle(NP)-based therapeutics. Through thermodynamic analysis, we elucidate that the mechanisms governing both the endocytic time of a single NP and the cellular uptake can be unified into a general energy-balance framework of NP-membrane adhesion and membrane deformation. Yet the NP-membrane adhesion strength is a globally variable quantity that effectively regulates the NP uptake rate. Our analysis shows that the uptake rate interrelatedly depends on the particle size and ligand density, in contrast to the widely reported size effect. Our model predicts that the optimal radius of NPs for maximal uptake rate falls in the range of 25-30 nm, and optimally several tens of ligands should be coated onto NPs. These findings are supported by both recent experiments and typical viral structures, and serve as fundamental principles for the rational design of NP-based nanomedicine.

Engineering Virus-like Particles for Antigen and Drug Delivery

Current protein & peptide science, 2016

Virus-like particles (VLPs) are nanoscale biological structures consisting of viral proteins assembled in a morphology that mimics the native virion but do not contain the viral genetic material. The possibility of chemically and genetically modifying the proteins contained within VLPs makes them an attractive system for numerous applications. As viruses are potent immune activators as well as natural delivery vehicles of genetic materials to their host cells, VLPs are especially well suited for antigen and drug delivery applications. Despite the great potential, very few VLP designs have made it through clinical trials. In this review, we will discuss the challenges of developing VLPs for antigen and drug delivery, strategies being explored to address these challenges, and the genetic and chemical approaches available for VLP engineering.

Virus Like Particles as Immunogens and Universal Nanocarriers

Polish Journal of Microbiology, 2015

Over the last two decades virus-like particles (VLPs) have become an important tool in biomedical research and medicine. VLPs are multiprotein structures that resemble viable virus particles in conformation but lack the viral genome. Consequently, they are non‑infectious and non‑replicative, but retain the ability to penetrate cells, making them useful for a vast spectrum of applications. Above all, VLPs mimicking genuine viruses in antigenic structure provide a safe alternative to attenuated and inactivated viruses in vaccine development. Moreover, due to their transducing proprieties, VLPs may efficiently deliver foreign nucleic acids, proteins, or conjugated compounds to the organism, or even to specific cell types. Additionally, VLPs are versatile nanovectors due to their flexibility in terms of composition and expression systems. In this review, different approaches for of virus-like particle synthesis and manipulation, as well as their potential applications, will be discussed.

Virus Like Particles: A Self-Assembled Toolbox for Cancer Therapy

2022

Nanoparticle-based therapeutics have been applied in a broad range of clinical and pre-clinical applications from diagnosis to treatment for cancer. A wide range of synthetic and naturally occurring materials such as polymers, metal oxides, silicate, liposomes, and carbon nanotubes have been developed to overcome key barriers in small molecule therapeutics including intracellular trafficking, cell/tissue targeting, poor biodistribution, and low efficiency. Virus like particles (VLPs)—engineered and non-infectious self-assembling systems based on viral nanostructures—are new approach toward overcoming these limitations, as they are a protein-based nanomaterial that closely mimics the highly symmetrical and polyvalent conformation of viruses while lacking the viral genomes. Their innate biocompatibility, biodegradability, monodispersity, mild immunogenicity, and safety combined with the capacity to chemically modify the interior and exterior surfaces of these systems offer scientists ...