Probing an atomic gas confined in a nanocell (original) (raw)

Since the recent realization of extremely thin vapour cells (local thickness: 20-1000 nm), we investigate the optical properties of these 1-D confined vapours. Aside from their interest for Doppler-free spectroscopy, nanocells offer a new tool to evaluate collisional shift and broadening, yielding an access to the open problem of collisions under confinement. It also allows probing of the atom-surface interaction in a range of unusual short distances. The experimental exploration of the distance dependence, normally evolving according to the z-3 van der Waals (vW) dependence (z : the atom-surface distance), is worth doing because it could be affected by imperfections of the real surface, such as roughness, adsorbed impurities or charges. A detailed lineshape analysis is now under progress, with tight constraints imposed to the fitting by the twin information brought by simultaneous reflection and transmission spectra. Another issue is a possible resonant enhancement, susceptible to induce a repulsive vW, due to the coupling between atom excitation and a surface mode.