Durability of snow cover and its long-term variability in the Western Sudetes Mountains (original) (raw)
Abstract
This paper presents the results of the analysis of the Western Sudetes' snow cover temporal and spatial changes, as well as it demonstrates the research on the long-term trends in the changes of snow cover durability. In order to conduct the study, the coefficient of snow cover durability (V) was used, which was defined as the quotient of the actual and the potential time of snow cover duration and expressed in percentage (1-100%). Moreover, the frequency of total disappearance of snow cover was established for the optimal winter season (December-March). Measurement data were obtained from 17 stations in the 1961-2015 period. The snow cover on the Western Sudetes' slopes with southern (S) macro-exposure lasts longer (has greater durability) than on the slopes in analogous altitude zones with northern (N) macro-exposure. At the altitudinal level of 600-700 m a.s.l., where the differences are the biggest, the average V values range from 60% at stations N to 75% in stations S. In the analysed area, excluding the upper ranges, slight negative trends in V changes have been noted. Snow cover persists for a shorter and shorter time. For the substantial majority of the stations, the trends in these changes are not statistically significant at the 0.05 level of statistical significance. They refer to the tendencies in other mountainous regions in Poland and Europe. Analogously, the stations with S macro-exposure, located at similar altitudes as stations with N macro-exposure, are characterised by two to three times lesser frequency of total disappearance of snow cover. Coefficient V is negatively correlated with the total disappearance of snow cover. At the stations with S macroexposure in the Western Sudetes, these correlations are usually strong or very strong, whereas at the stations with N macro-exposure, at similar altitudes, they are usually moderate or very weak.
Figures (14)
Table 1 Characteristics of weather stations
These were Sobik et al. (2014), as well as Urban et al. (2018), who pointed out to the fact that in the Karkonosze Mountains the essential differences in precipitation at similar altitudes exist not in the east-west direction, but between the southern of northern sides of the mountains. Also, they emphasised the increase in winter precipitation in the upper river catchment of the Kamienna and in the western part of the Polish Karkonosze. This should be accounted for by the The big denivelation of over 1250 m (from the station Jelenia Gora, located in a valley, to the highest peak Sniezka) and the great variety of the topography of the area, as well as the exposure of the station cause the noticeable spatial variety of V value. This variety results from many factors, as in the case of snowiness and severity index of winters (Urban et al. 2018), including altitude and orographic deformation of the flow field of air masses that shape precip- itation and air temperature. In consequence of this deforma- tion, there emerges the distinct contrast between the snowiness in the river catchment of the Elbe (S, SW and W macro- exposures) compared with the Odra river catchment (NE and N macro-exposures). The areas with SW and W exposures are characterised by the longer period of retention and bigger depth of snow cover. This result corresponds with the previous study on the thermal and precipitation variety of the Karkonosze Mountains (Sobik et al. 2014) or of the Karkonosze and the Izera Mountains (Urban et al. 2018). This contrast stands out especially in the altitude range of 500-900 m a.s.l. (Fig. 2). In the upper ridges, the differences are becoming less distinguishable due to the snow blowing alternately from one to the other side of the range.
Nonetheless, in the wide slope zone 600—700 m, the vari- ability of coefficient V varies significantly. This is especially noticeable in the zone 600—700 m (Harrachov, Vysoké nad Jizerou), where the stations with macro-exposure S are
Table 2 The coefficient of snow cover durability and its standard deviation (4), coefficient of variability (Vz) and frequency (N) of seasons with stable and unstable snow cover
The calculated trends of V changes are negative for most of the analysed stations in the Western Sudetes (Table 3). This means that the values of V successively decreased, indicating at the same time, that the time of retention shortened in suc- cessive winters. This result is confirmed by the previous study on snow cover in Sniezka in the period 1901-2000 (Glowicki 2005) or in the Polish Sudetes and their foreland in 1951— 2007 (Urban 2015, 2016). The pace of decrease fell within the range from ca. — 0.6% points (pp)/decade in station Desnd—Sous to ca. — 2.7 pp/decade in Swieradow Zdrdj sta- tion or even —3.1 pp/decade in station Horni MarSov. The average pace of the drop of coefficient V for all stations for which its trends of changes were determined was — 1.43 pp/ decade (Table 3). The trend of V change is statistically signif- icant at the p=0.05 significance level merely for one out of eight stations which were selected for the analysis of snow conditions (Table 3). A slight decreasing trend in the charac- teristics of snow cover was observed in most of Polish area in the second half of the twentieth century. The changes in snow cover relate to the changes in the atmospheric circulation and especially with the increased frequency of the advection of air masses from the western sector (Falarz 2004). The more fre- quent occurrence of winters with a relatively low V coefficient might be related to the changes in atmospheric circulation
Table 3. Change trend magnitude, correlation coefficient (R) and the statistical significance of the coefficient of snow cover durability * Significant statistically at the 0.05 significance level types over the Northern Atlantic. The growth of zonal cyclon- ic circulation from the south-western direction in last decades of the twentieth century was proved by Migala (2005) and Migala et al. (2016). This circulation generates in Western and Mid-Europe a vast atmospheric front with increased cloudiness and brings warming and precipitation in the cold season (Urban et al. 2018).
0.0 to 0.7. In the stations with southern macro-exposure and at Sniezka Mt., they are significant statistically at the 0.05 significance level. The correlation coefficient is clearly dif- ferentiated depending on the macro-exposure and altitude (Table 5). Namely, the stations with southern macro- exposure (eg Bediichov, Harrachov, Horni MarSov) are characterised by the explicitly higher R values (0.7 + 0.5) than stations with northern macro-exposure (eg. Przesieka, Karpacz_2, Swieradéw Zdrdj), where R is in the range of 0.3 + 0.2. Thus, in the stations on the slopes of the Western Sudetes with southern macro-exposure, these features are usually strongly or very strongly correlated with each other, whereas in the stations with northern macro-exposure, the strength of the relationship is usually moderate or very weak. This is well illustrated by the correlations of the se- lected stations located at similar altitudes, but with opposite macro-exposures, i.e. Horni Mar8ov—Karpacz_2 and Harrachov—Przesieka (Fig. 8). In addition, the strongest correlation occurs in the middle parts of the slopes with macro-exposure S and SW. The weakest correlation (0.0 + 0.1) or even lack of it is shown by the stations with the lowest locations and northern macro-exposure, i.e. Hejnice and Jelenia Gora (Table 5). This is due to differ- ences (already mentioned in the study) in temperatures and winter precipitation in slope stations with opposite macro- exposures conditioned by the foehn effect and the altitude above sea level. with southern macro-exposure, there appeared more frequent foehn phenomena and the adiabatic warming of descending air on the leeward side of the orographic barrier. The advanc- ing frequency of the advection of polar and sea air masses from SW and W directions in the cold season in the Sudetes as well as their thermal and precipitation implications have already drawn attention of the researches in this field (Kwiatkowski 1972, 1975, 1979; Sobik et al. 2014; Urban et al. 2018). Although the correlation of the number of days with total disappearance of snow cover between Harrachov- Przesieka and Horni MarSov-Karpacz_2 stations is positive, it is clearly weaker than in the case of the V coefficients. The calculated correlation coefficient R for the common period 1983/1984—2010/2011 in the pairs of mentioned stations were 0.3.
Fig.6 The course of number of days with total disappearance of snow cover (A) at the stations: Harrachov—Przesieka (I) and Horni MarSov—Karpacz_2 (ID in the period December—March
In Karpacz_2 station in 1983/1984—2010/2011 winter seasor *Significant statistically at the 0.05 significance level Table 5 Pearson’s linear correlation values (R) and strength of the relationship between the snow cover durability coefficient and total snow disappearance in 1981/1982-2010/2011 winter season in the selected stations
Fig. 8 The relationship between snow cover durability coefficient (V) and total snow disappearance (A) in 1981/1982—2010/2011 winter seasons alongside their trend lines (black bold lines) and simple
regression equations in selected macro-exposure stations S (left column) and macro-exposure N (right column). Note: in Karpacz_2 station in 1983/1984—-2010/2011 winter seasons.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (63)
- Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass balance and length variations in Norway. Ann Glaciol 42(1):317-325. https://doi.org/10.3189/172756405781812826
- Bednorz E (2002) Snow cover in western Poland and macro-scale circu- lation conditions. Int J Climatol 22:533-541
- Bednorz E (2004) Snow cover in eastern Europe in relation to tempera- ture, precipitation and circulation. Int J Climatol 24:591-601. https://doi.org/10.1002/joc.1014
- Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Clim Chang 36:281-300. https://doi.org/10.1007/978-94-015-8905-5\_3
- Beniston M (2000) Environmental change in mountains and uplands. Arnold, London 172 pp Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for cli- mate impacts studies. Theor Appl Climatol 74:19-31. https://doi. org/10.1007/s00704-002-0709-1
- Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915-97. J Clim 13:2339-2355
- Brown RD, Petkova N (2007) Snow cover variability in Bulgarian moun- tainous regions, 1931-2000. Int J Climatol 27:1215-1229. https:// doi.org/10.1002/joc.1468
- Brown RD, Mote PW (2009) The response of Northern Hemisphere snow cover to a changing climate. J Climate 22:2124-2145. https://doi.org/10.1175/2008JCLI2665.1
- Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 years of climate in the French Alps (1958- 2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:2487-2512. https://doi.org/10.1175/2009JAMC1810.1
- Falarz M (1993) O warunkach meteorologicznych zimowania roślin uprawnych w Karpatach Zachodnich (on the meteorological condi- tions of overwintering of crops in the Western Carpathian Mountains). Problemy Zagospodarowania Ziem Górskich. PAN. Komitet Zagospodarowania Ziem Górskich 36:75-88 The Committee on Management of Mountain Regions of the Polish Academy of Sciences(in Polish)
- Falarz M (2000-2001) Zmienność wieloletnia występowania pokrywy śnieżnej w polskich Tatrach (long-term variability of snow cover in the Polish part of the Tatra Mountains). Folia Geogr Ser Geogr Phys 31-32:101-123 (in Polish)
- Falarz M (2002) Klimatyczne przyczyny zmian i wieloletniej zmienności występowania pokrywy śnieżnej w polskich Tatrach (The climatic causes of changes and long-term variability in the snow cover of the Polish Tatra Mountains). Przegl Geogr 74(1):83-107 (in Polish)
- Falarz M (2004) Variability and trends in the duration and depth of snow cover in Poland in the 20th century. Int J Climatol 24(13):1713- 1727. https://doi.org/10.1002/joc.1093
- Falarz M (2007) Snow cover variability in Poland in relation to the macro-and mesoscale atmospheric circulation in the 20 th century. Int J Climatol 27:2069-2081. https://doi.org/10.1002/joc.1505
- Falarz M (2010) Współczynnik trwałości pokrywy śnieżnej w Polsce - rozkład przestrzenny, ekstrema, zmiany wieloletnie (Coefficient of stability of snow cover in Poland -spatial distribution, extremes, long-term changes). In: Bednorz E (ed) Klimat Polski na tle klimatu Europy. Warunki termiczne i opadowe. Seria: Prace i Studia z Geografii i Geologii 15, Bogucki Wydawnictwo Naukowe, Poznań, pp 169-179 (in Polish)
- Falarz M (2013) Seasonal stability of snow cover in Poland in relation to the atmospheric circulation. Theor Appl Climatol 111:21-28. https://doi.org/10.1007/s00704-012-0642-x
- Franczak P (2018) Frequency and thickness of snow cover at the foot of the Babia Góra Massif in the winter seasons 1960/61 to 2014/15. For Res Pap 79(2):125-138. https://doi.org/10.2478/frp-2018-0014
- Głowicki B (1977) Struktura przestrzenna pokrywy śnieżnej w górnej części zlewni Potoku Szrenickiego (Spatial structure of the snow cover in the upper part of the Szrenicki Stream catchment). Mat Bad IMGW, Seria: Meteorologia 77-96 (in Polish)
- Głowicki B (2005) Klimat Karkonoszy (Climate of the Karkonosze Mountains). In: Mierzejewski M (ed): Karkonosze -przyroda nieożywiona i człowiek. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, pp 381-397
- Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover, temperature and the radiative heat balance over the Northern Hemisphere. J Clim 7:1633-1656
- Gutzler DS, Rosen RD (1992) Interannual variability of wintertime snow cover across the Northern Hemisphere. J Clim 5:1441-1447
- Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20:615-640. https://doi.org/10\. 1002/(sici)1097-0088(200005)20:6<615::aid-joc489>3.0.co;2-0
- Hess M (1965) Piętra klimatyczne w polskich Karpatach Zachodnich (Vertical climatic zones in the Polish Western Carpathians). Zeszyty Naukowe UJ. Pr Geogr 11:1-262 (in Polish)
- Hess M, Niedźwiedź T, Obrębka-Starklowa B (1980) O prawidłowościach piętrowego zróżnicowania stosunków klimatycznych w Sudetach (On regularities in zonal differentiation of the climatic conditions in the Sudetes Mountains). Rocznik Naukowo-Dydaktyczny Wyższej Szkoły Pedagogicznej w Krakowie 71:167-201 (in Polish)
- Huang J, van den Dool HM, Barnston AG (1996) Long-lead seasonal tem- perature prediction using optimal climate normals. J Clim 9:809-817. https://doi.org/10.1175/1520-0442(1996)009<0809:llstpu>2.0.co;
- IPCC (2013) Climate change. The IPCC fifth assessment report, vol I (Science). Cambridge University Press, Cambridge. New York G. Urban et al.
- Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M (2016) Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Chang 139:637-649. https://doi. org/10.1007/s10584-016-1806-y
- Kosiba A (1949) Częstość szaty śnieżnej na Ziemiach Śląskich (The fre- quency of snow cover in Lower Silesia). Pr Wrocł Tow Nauk, seria B, 21, Wrocław, pp 91
- Kożuchowski K (1985) Zmienność opadów atmosferycznych w Polsce w stuleciu 1881-1980 (Variation in precipitation in the years 1881- 1980 in Poland). Acta Geogr Lodz 48:1-158 (in Polish)
- Kożuchowski K, Żmudzka E (2001) Ocieplenie w Polsce: skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku (The warming in Poland: the range and seasonality of the changes in air temperature in the second half of 20th century). Prz Geol 46(1-2):81-122 (in Polish)
- Kwiatkowski J (1972) Feny w Kotlinie Jeleniogórskiej (Foehns in Jelenia Góra valley). Acta Univ Wratislav 173:3-46
- Kwiatkowski J (1975) Zasięg fenów sudeckich i ich wpływ na mezoklimat regionów południowo-zachodniej i środkowej Polski (The reach of Sudeten föhns and their influence of the mezoclimate of southwestern and cenrtal regions of Poland). Przegl Geol 20(28):15-30 (in Polish)
- Kwiatkowski J (1979) Zjawiska fenowe w Sudetach i na przedpolu Sudetów (Foehns phenomena in the Sudetes and on their foreland). Problemy Zagospodarowania Ziem Górskich 20:243-280 (in Polish)
- Kwiatkowski J (1985) Szata śnieżna, szadź i lawiny (Snow cover, Rime and Avalanches). In: Jahn A (ed) Karkonosze Polskie (The Polish Karkonosze Mountains). Ossolineum, Wrocław, pp 117-144 (in Polish)
- Leśniak B (1973) O niektórych charakterystykach pokrywy śnieżnej w województwie krakowskim (On some characteristics of snow cover in the Cracow district). Zesz Nauk UJ Pr Geol 32:119-128 (in Polish)
- Leśniak B (1981) Współczynnik trwałości pokrywy śnieżnej na obszarze dorzecza górnej Wisły (Coefficient of snow cover durability in the upper Vistula basin). Folia Geogr Ser Geogr Phys 14:89-102 (in Polish)
- Limanówka D, Biernacik D, Czernecki B, Farat R, Filipiak J, Kasprowicz T, Pyrc R, Urban G, Wójcik R (2012) Zmiany i zmienność klimatu od połowy XX w. (Climate change and variability since the middle of the 20th century) In: Wibig J, Jakusik E (ed) Warunki klimatyczne i oceanograficzne w Polsce i na Południowym Bałtyku. Seria: Monografie IMGW-PIB, Warszawa 1:7-33
- Lityński J (1969) Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski (A numeral classification of circulation and weather types for Poland). Prace PIHM 97:3-15 (in Polish)
- Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. https://doi.org/10.1029/2008GL033998
- Mayes Boustead BE, Hilberg SD, Shulski MD, Hubbard KG (2015) The accumulated winter season severity index (AWSSI). J Appl Meteorol Climatol 54:1693-1712. https://doi.org/10.1175/JAMC-D-14-0217.1
- Migała K (2005) Piętra klimatyczne w górach Europy a problem zmian globalnych (Climatic Belts in the European Mountains and the Issue of Global Changes). Studia Geograficzne 78, Wrocław pp 149 (in Polish)
- Migała K, Urban G, Tomczyński K (2016) Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theor Appl Climatol 125:337-351. https://doi.org/10\. 1007/s00704-015-1468-0
- Nowosad M (1992) Pokrywa śnieżna w Bieszczadach i warunki jej występowania (Snow cover in the Bieszczady Mountains and condi- tions for its occurrence). UMCS. Dissertation. Manuscript (in Polish)
- Ojrzyńska H, Błaś M, Kryza M, Sobik M, Urban G (2010) Znaczenie lasu oraz morfologii terenu w rozwoju pokrywy śnieżnej w Sudetach Zachodnich na przykładzie sezonu zimowego 2003/2004 (The role of forest and terrain morphology in snow cover development in the Western Sudetes-2003/2004 winter season case study). Sylwan 154(6):412-428 (in Polish)
- Paczos S (1982) Stosunki termiczne i śnieżne zim w Polsce (Thermal conditions and snowiness of winters in Poland). Rozprawy habilitacyjne UMCS 24, Lublin, pp 180 (in Polish)
- Pawłowska J, Jankowska A, Pindor T (2000) Kalendarz typów cyrkulacji atmosferycznej według J. Lityńskiego (1991-1999) (The calendar of atmospheric circulation types according to J. Lityński) (1991- 1999). IMGW Warszawa, 28 pp (in Polish)
- Pederson GT, Betancourt JL, McCabe GJ (2013) Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains. US Geophys Res Lett 40:1811-1816. https://doi.org/ 10.1002/grl.50424
- Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30: 307-319. https://doi.org/10.1007/s00382-007-0289-y
- Reunier H (1935) Höhe und Andauer der Schneedecke im Reisengebirge. Meteor Zitschr 52(3):31
- Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local and large scale climate variability. Geophys Res Lett 31:L13215. https://doi.org/10.1029/2004GL020255
- Schmucki E, Marty C, Fierz C, Weingartner R, Lehning M (2015) Impact of climate change in Switzerland on socioeconomic snow indices. Theor Appl Climatol 127:875-889. https://doi.org/10.1007/s00704- 015-1676-7
- Schönwiese CD, Rapp J (1997) Climate trend atlas of Europe based on observations 1891-1990. Kluwer Academic Publishers, Dordrecht Sobik M, Błaś M, Migała K, Godek M, Nasiółkowski T (2014) Klimat (Climate). In: Knapik R, Raj A (ed) Przyroda Karkonoskiego Parku Narodowego. Jelenia Góra, pp 147-186 (in Polish)
- Twardosz R, Kossowska-Cezak U (2016) Exceptionally cold and mild winters in Europe (1951-2010). Theor Appl Climatol 125:399-411. https://doi.org/10.1007/s00704-015-1524-9
- Urban G (2015) Zaleganie pokrywy śnieżnej i jego zmienność w polskiej części Sudetów i na ich przedpolu (Duration of snow cover and its variability in the Polish part of the Sudetes Mts. and their foreland). Przegl Geogr 87(3):497-516. https://doi.org/10.7163/PrzG.2015.3\. 5 (in Polish)
- Urban G (2016) Snow cover and its variability in the Polish Sudetes Mts. and the Sudetic foreland. Geografie 121(1):32-53
- Urban G, Richterová D (2010) Warunki śniegowe a uprawianie narciarstwa w Sudetach Zachodnich na polsko-czeskim pograniczu (Snow condi- tions and skiing in the Western Sudetes on Polish-Czech Republic bor- der). Wiad Meteorol Hydrol Gospod Wod 1-4:3-28 (in Polish)
- Urban G, Richterová D, Vajskebr V (2011) Pokrywa śnieżna w październiku 2009 w Sudetach Zachodnich jako przykład zjawiska ekstremalnego (Snow cover in October 2009 in the Western Sudetes Mountains as an example of extreme phenomenon). Wiad Meteorol Hydrol Gospod Wod 5(4):75-96 (in Polish)
- Urban G, Richterová D, Kliegrová S, Zusková I, Pawliczek P (2018) Winter severity and snowiness and their multiannual variability in the Karkonosze mountains and Jizera moun- tains. Theor Appl Climatol 134:221-240. https://doi.org/10\. 1007/s00704-017-2270-y
- Ustrnul Z (1998) Variability of air temperature and circulation at selected stations in Europe. In Proceedings of the 2nd European Conference on Applied Climatology. Österreichische Beitra¨ge zu Meteorologie und Geophysik. Zentralanstalt für Meteorologie und Geodynamik, Vienna 19; 81 (full text on ECAC CD-ROM, session 1)
- Valt M, Cianfarra P (2010) Recent snow cover variability in the Italian Alps. Cold Reg Sci Technol 64:146-157
- Wibig J, Głowicki B (2002) Trends of minimum and maximum temperature in Poland. Clim Res 20(2):122-133. https://doi.org/10.3354/cr020123
- WMO (2011) Characterizing climate from datasets. In: Guide to clima- tological practices, World Meteorological Organization, Geneva, pp 54-72 updated 19.01.2016 http://www.wmo.int/pages/prog/wcp/ wcdmp/GCDS_1.php. Accessed 22 May 2017
- Zemp M, Paul F, Hoelzle M, Haeberli W (2008) Glacier fluctuations in the European Alps, 1850-2000: an overview and spatio-temporal analysis of available data. In: Orlove B, Wiegandt E, Luckman B (ed): Darkening peaks, Glacial Retreat, Science, and Society. Berkeley, US, pp 152-167