The effects of femoral metaphyseal morphology on growth plate biomechanics in juvenile chimpanzees and humans (original) (raw)
Related papers
Young's Modulus and Load Complexity: Modeling Their Effects on Proximal Femur Strain
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology, 2018
Finite element analysis (FEA) is a powerful tool for evaluating questions of functional morphology, but the application of FEA to extant or extinct creatures is a non-trivial task. Three categories of input data are needed to appropriately implement FEA: geometry, material properties, and boundary conditions. Geometric data are relatively easily obtained from imaging techniques, but often material properties and boundary conditions must be estimated. Here we conduct sensitivity analyses of the effect of the choice of Young's Modulus for elements representing trabecular bone and muscle loading complexity on the proximal femur using a finite element mesh of a modern human femur. We found that finite element meshes that used a Young's Modulus between 500 and 1,500 MPa best matched experimental strains. Loading scenarios that approximated the insertion sites of hip musculature produced strain patterns in the region of the greater trochanter that were different from scenarios that grouped muscle forces to the superior greater trochanter, with changes in strain values of 40% or more for 20% of elements. The femoral head, neck, and proximal shaft were less affected (e.g. approximately 50% of elements changed by 10% or less) by changes in the location of application of muscle forces. From our sensitivity analysis, we recommend the use of a Young's Modulus for the trabecular elements of 1,000 MPa for the proximal femur (range 500-1,500 MPa) and that the muscular loading complexity be dependent on whether or not strains in the greater trochanter are the focus of the analytical question.
Trabecular architecture of the distal femur in extant hominids
Trabecular architecture of the distal femur in extant hominids, 2024
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n= 26), Gorilla gorilla (n= 14), Pan troglodytes (n = 15) and Pongo sp. (n= 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.
The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2011
Long bone shafts (diaphyses) serve as load-bearing structures during locomotion, implying a close relationship between diaphyseal form and its locomotor function. Diaphyseal form-function relationships, however, are complex, as they are mediated by various factors such as developmental programs, evolutionary adaptation, and functional adaptation through bone remodeling during an individual's lifetime. The effects of the latter process (''Wolff 's Law'') are best assessed by comparing diaphyseal morphologies of conspecific individuals under different locomotor regimes. Here we use morphometric mapping (MM) to analyze the morphology of entire femoral diaphyses in an ontogenetic series of wild and captive common chimpanzees (Pan troglodytes troglodytes). MM reveals patterns of variation of diaphyseal structural and functional properties, which cannot be recognized with conventional cross-sectional analysis and/or geometric morphometric methods. Our data show that diaphyseal shape, cortical bone distribution and inferred cross-sectional biomechanical properties vary both along ontogenetic trajectories and independent of ontogeny. Mean ontogenetic trajectories of wild and captive chimpanzees, however, were found to be statistically identical. This indicates that the basic developmental program of the diaphysis is not altered by different loading conditions. Significant differences in diaphyseal shape between groups could only be identified in the distal diaphysis, where wild chimpanzees exhibit higher mediolateral relative to anteroposterior cortical bone thickness. Overall, thus, the hypothesis that Wolff 's Law predominantly governs long bone diaphyseal morphology is rejected.
Journal of Human Evolution, 2018
When measured as a ratio of mean midshaft diameter to bone length, the OH 8 fossil hominin foot exhibits a metatarsal (Mt) robusticity pattern of 1 > 5 > 3 > 4 > 2, which differs from the widely perceived "common" modern human pattern (1 > 5 > 4 > 3 > 2); African apes generally exhibit a third pattern (1 > 2 > 3 > 4 > 5). Largely because of the relative ranking of Mt2 and Mt5, OH 8 metatarsals structurally resemble the pattern exhibited by bipedal humans more than the pattern of quadrupedal and climbing African apes. Considering only these three phenotypes, however, discounts the potentially important functional implications of variation in modern human (and African ape) metatarsal robusticity patterns, suggesting that they are not useful for interpreting the specific biomechanics of a bipedal gait in fossils (i.e., whether it was modern human-like or not). Using computed tomography scans to quantify metatarsal midshaft cross-sectional geometry in a large sample of Homo (n¼130), Gorilla (n¼44) and Pan (n¼80), we documented greater variation in metatarsal robusticity patterns than previously recognized in all three groups. While apes consistently show a 1 > 2 > 3 > 4 > 5 pattern in our larger sample, there does not appear to be a similarly precise single "common" human pattern. Rather, human metatarsals converge towards a 1 > 4/5 > 2/3 pattern, where metatarsals 4 and 5, and metatarsals 2 and 3, often "flip" positions relative to each other depending on the variable examined. After reassessing what a "common" human pattern could be based on a larger sample, the previously described OH 8 pattern of 1 > 5 > 3 > 4 > 2 is only observed in some humans (<6%) and almost never in apes (<0.5%). Although this suggests an overall greater similarity to (some) humans than to any ape in loading of the foot, the relatively rare frequency of these humans in our sample underscores potential differences in loading experienced by the medial and lateral columns of the OH 8 foot compared to modern humans.
Cross-Sectional Morphology of the Femoral Neck of Wild Chimpanzees
International Journal of Primatology, 2010
To understand the mechanical effects of different modes of locomotion on the femoral neck of chimpanzees, we investigated the cross-sectional morphology of the femoral neck of 4 chimpanzees (Pan troglodytes schweinfurthii) collected from the Mahale Mountains, Tanzania. We performed serial computed tomography (CT) scans of the neck from the femoral head to the base of the neck perpendicular to the long axis of the neck. We measured the cortical thickness of the serial 5 cross sections of the neck region every 45°around the circumference, i.e., 8 points per section, and examined the cross-sectional properties of the mid-section. When we compared the superior and inferior parts of the cortical thickness of the femoral neck, the inferior part exhibited the greatest cortical thickness whereas the superior part had the smallest values in every specimen. Researchers have also observed such regional differences between superior and inferior cortical thicknesses in bipedal humans and other primates, although these differences are not as large in the chimpanzee as in bipedal hominini. The present study differed from the past study on hominini and chimpanzees in that the superior anterior (SA) part exhibited greater cortical thickness in chimpanzees. We believe these observations reflect the structural strengthening of parts of the chimpanzee femoral neck that is needed to accommodate the mechanical loads imposed by arboreal vertical climbing and terrestrial quadrupedal and bipedal locomotion.
Anatomical record (Hoboken, N.J. : 2007), 2015
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysi...
Morphological characteristics of the developing proximal femur: A biomechanical perspective
Srpski Arhiv Za Celokupno Lekarstvo, 2012
Introduction In contrast to a plethora of studies on the proximal femur in adults, its external and internal morphology in growing children has not been sufficiently analyzed. Objective We analyzed changes in external and internal morphology of the proximal femur during growth and development to interpret the links between them and concepts of the human femoral biomechanics. Methods We assessed external geometry, internal trabecular and cortical arrangement, and bone mineral density (BMD) of the proximal femur in 29 children (age at death from 1 month to 14 years) from archaeological context by using microscopic and radiographic methods. Results The results showed that both the femoral neck width and length increased with age, with the femoral neck becoming more elongated, while the collo-diaphyseal angle decreased. A strong relationship between age and adjusted areal BMD was found, showing continuous increase during childhood. Parallel trabecular pattern at birth changed to mature three distinct trabecular groups (longitudinal-principal compressive, transversal-tensile and randomly scattered) starting from the age of 8 months. In older children the superior and inferior aspects of the femoral neck differently changed with growth, with medial neck having thicker cortex and trabeculae. Conclusion In the light of bone adaptation principle, the observed changes in external and internal morphology are governed by mechanical forces acting on the developing femur. Our findings on the development of trabecular pattern and cortical distribution are compatible with recent views on the femoral biomechanics which point out the predominance of compressive stresses in the femoral neck, adaptation to shear stresses, multiaxial loading perspective, prevalence of muscle effects over body weight, and existence of adaptational eccentricity.
Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs
Journal of Experimental Biology, 2003
In most mammals, especially those adapted for cursoriality, distal limb bones are thinner than more proximal bones, giving the limb skeleton a tapered shape example, midshaft cortical areas decrease about 16% between the femur and tibia, and 24% between the tibia and metatarsal. Limb tapering is generally thought to save energy by reducing a limb's moment of inertia . How much energy is saved by distal tapering has been the subject of debate, but is probably considerable in most species. While found that three species (cheetah, gazelle and goats) with different limb configurations had similar energy costs (VO∑·g -1 ·h -1 ) over a range of speeds, the conclusions of the study may be flawed because the animals were not run at comparable speeds. The results of Taylor et al. (1974) contradict not only theoretical predictions (for example, see , but also more controlled studies such as by , who found that redistributing 3.6·kg from the thigh to the ankles in trained humans increases the metabolic cost of running at 2.68·m·s -1 by 15%.
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P 3 and M 2 .
In vitro bone strain distributions in a sample of primate pelves
The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45 ° induces smaller shear strains than mid-stance (90 °) or hip extension (105 °). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics.