Assessment of Pohang Earthquake-Induced Liquefaction at Youngil-Man Port Using the UBCSAND2 Model (original) (raw)

Cyclic and Permanent Shear Strains of a Soft Cohesive Soil Subjected to Combined Static and Cyclic Loading

Applied Sciences

This paper refers to cyclic shear strains (γc) and permanent shear strains (γp) of a soft cohesive soil, when both monotonic shear stresses (τo) and cyclic shear stresses (τc) are applied. The research is backed by an extensive experimental program with 139 cyclic simple shear tests that included identification and classification tests. These cyclic simple shear tests were conducted under different levels of stresses, τo, before the cyclic phase. Laboratory tests were carried out on undisturbed samples from the Port of Barcelona, located in Spain on the Mediterranean coast, and characterized by a monotonic strength (τmax) approximately equal to 30% of the initial effective vertical stress (σ′ov). The samples were taken at depths between 29 and 52 m and correspond to an initial effective vertical stress between 277 and 413 kPa, respectively. In general, the results indicate that: (a) the combination of τo and τc controls the generation of γc and γp, (b) it is not always true that whe...

Evaluation of liquefaction potential and post-liquefaction settlements in a coastal region in Atakum

Soil liquefaction is one of the most momentous causes of damages induced by earthquakes. It can be describedas a sudden decrease in the strength of saturated, cohesionless soil layers, remaining effectual for a length of time under transient and cyclic loading due to excess pore water pressure generation. Consequently, the most appropriate and typical soilcondition which brings the potential out to liquefy is loose sand with a groundwater table close to ground surface. This study is pertinent to determine the liquefaction potential in a coastal region in Atakum County of Samsun Province, Turkey. Therefore, empirical equations were used to determine the peak ground accelerations for three scenario earthquakes with the magnitudes of 6.5, 7.0, and 7.2 in order to consider in the simplified procedure context proposed by Seed and Idriss (J. Soil Mech. Found. Div. ASCE 97:1249–1273 1971). Liquefaction potential evaluations were performed using standard penetration test blow counts for four boreholes for sandy portions of the soil profile which exist in the first 20 m below ground surface. In addition to analytical evaluations, twodimensional nonlinear analyses were ran with Towhata-Iai constitutive model suitable for liquefaction analysis available in DIANA finite element software to clarify excess pore pressure generation that leads to liquefaction. It is also well-known that sands tend to densify when subjected to seismic shaking. Densification of undersoil causes settlement at the ground surface. Liquefaction induced settlements usually cause damages on both superstructures and infrastructures. On the basis of this fact, the method proposed by Ishihara and Yoshimine (Soils Found. 32:173–188 1992) was used to determine the settlements for scenario earthquakes.

Soil-Structure Interaction Using Computer and Material Models Advanced Geotechnical Engineering

Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models , 2010

Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions. This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D) Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability) This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.

Prediction and evaluation of nonlinear site response with potentially liquefiable layers in the area of Nafplion (Peloponnesus, Greece) for a repeat of historical earthquakes

Natural hazards and earth system sciences

We examine the possible non-linear behaviour of potentially liquefiable layers at selected sites located within the expansion area of the town of Nafplion, East Peloponnese, Greece. Input motion is computed for three scenario earthquakes, selected on the basis of historical seismicity data, using a stochastic strong ground motion simulation technique, which takes into account the finite dimensions of the earthquake sources. Site-specific ground acceleration synthetics and soil profiles are then used to evaluate the liquefaction potential at the sites of interest. The activation scenario of the Iria fault, which is the closest one to Nafplion (M=6.4), is found to be the most hazardous in terms of liquefaction initiation. In this scenario almost all the examined sites exhibit liquefaction features at depths of 6–12 m. For scenario earthquakes at two more distant seismic sources (Epidaurus fault – M6.3; Xylokastro fault – M6.7) strong ground motion amplification phenomena by the shallo...