A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors (original) (raw)

The Diagnostic Value of Pan-Trk Expression to Detect Neurotrophic Tyrosine Receptor Kinase (NTRK) Gene Fusion in CNS Tumours: A Study Using Next-Generation Sequencing Platform

Pathology & Oncology Research, 2022

Background: Neurotrophic tyrosine receptor kinase (NTRK) fusion has been detected in rare types of CNS tumours, which can promote tumorigenesis. The efficacy of Trk inhibitor became a significant therapeutic interest. Our aim was to investigate whether Pan-Trk immunohistochemistry (IHC) is a reliable and efficient marker for detecting NTRK-fusion in different brain tumours. Methods: This study included 23 patients diagnosed with different types of CNS tumours. Testing for Pan-Trk IHC with monoclonal Ab (EPR17341) has been performed on all FFPE tissues. Parallelly, NTRK-rearrangements were tested using both DNA and RNA-based next-generation sequencing (NGS) assay using TruSight Onco500 platform. Results: The cohort included eight pilocytic astrocytomas, one oligodendroglioma, six IDH wildtype glioblastomas, four IDH mutant grade four astrocytomas, and one sample of each (astroblastoma, central neurocytoma, medulloblastoma, and liponeurocytoma). The mean age was 35 years; seven cases were in the paediatric age group, and 16 were adult. Pan-Trk expression was detected in 11 (47.8%) tumours, and 12 (52.1%) tumours showed no Pan-Trk expression. Nine Cases (82%) with different Pan-Trk expressions did not reveal NTRK-rearrangement. The other two positively expressed cases (liponeurocytoma and glioblastoma) were found to have NTRK2-fusions (SLC O 5A1-NTRK2, AGBL4-NTRK2, BEND5-NTRK2). All the 12 cases (100%) with no Pan-Trk expression have shown no NTRK-fusions. There was no statistically significant association between Pan-Trk expression and NTRK-fusion (p = 0.217). The detection of NTRK-fusions using NGS had high specificity over NTRK-fusion detection by using Pan-Trk IHC.

TRK Fusion Cancer: Patient Characteristics and Survival Analysis in the Real-World Setting

Targeted Oncology, 2021

Background Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers in various tumor types. While NTRK gene fusions are predictive of benefit from tropomyosin receptor kinase inhibitors regardless of tumor type, the prognostic significance of NTRK gene fusions in a pan-tumor setting remains unclear. Objective This study evaluated the characteristics and prognosis of tropomyosin receptor kinase fusion cancer in the realworld setting. Patients and Methods This retrospective study used a de-identified clinico-genomic database and included patients with cancer who had comprehensive genomic profiling between January 2011 and July 2018. Patients were classified as having cancer with NTRK gene fusions or NTRK wild-type genes. Patients were matched with a 1:4 ratio (NTRK fusion:NTRK wild-type) using the Mahalanobis distance method on demographic and clinical characteristics, including age and Eastern Cooperative Oncology Group performance status. Descriptive analysis of clinical and molecular characteristics was conducted. Kaplan-Meier estimator and Cox regression were used for overall survival analysis. Results Median overall survival was 12.5 months (95% confidence interval 9.5-not estimable) and 16.5 months (95% confidence interval 12.5-22.5) in the NTRK gene fusion (n = 27) and NTRK wild-type cohorts (n = 107), respectively (hazard ratio 1.44; 95% confidence interval 0.61-3.37; p = 0.648). Co-occurrence of select targetable biomarkers including ALK, BRAF, ERBB2, EGFR, ROS1, and KRAS was lower in cancers with NTRK gene fusions than in NTRK wild-type cancers. Conclusions Although the hazard ratio for overall survival suggested a higher risk of death for patients with NTRK gene fusions, the difference was not statistically significant. Co-occurrence of NTRK gene fusions and other actionable biomarkers was uncommon. Key Points Neurotrophic tyrosine receptor kinase (NTRK) gene fusions rarely co-occur with other known oncogenic alterations and in tumors that harbor them they are the primary oncogenic drivers. NTRK gene fusions are targetable oncogenic alterations and thus the adoption of widespread screening is recommended especially for patients with rare tumor types.

Multidisciplinary consensus on optimising the detection of NTRK gene alterations in tumours

Clinical and Translational Oncology

The recent identification of rearrangements of neurotrophic tyrosine receptor kinase (NTRK) genes and the development of specific fusion protein inhibitors, such as larotrectinib and entrectinib, have revolutionised the diagnostic and clinical management of patients presenting with tumours with these alterations. Tumours that harbour NTRK fusions are found in both adults and children; and they are either rare tumours with common NTRK fusions that may be diagnostic, or more prevalent tumours with rare NTRK fusions. To assess currently available evidence on this matter, three key Spanish medical societies (the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Pathological Anatomy (SEAP), and the Spanish Society of Paediatric Haematology and Oncology (SEHOP) have brought together a group of experts to develop a consensus document that includes guidelines on the diagnostic, clinical, and therapeutic aspects of NTRK-fusion tumours. This document also discusses the challe...

NTRK Fusions in Central Nervous System Tumors: A Rare, but Worthy Target

International Journal of Molecular Sciences

The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. Loss of function alterations in these genes can lead to nervous system development problems; conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions have been detected with extremely variable frequencies in many pediatric and adult cancer types, including central nervous system (CNS) tumors. These alterations can be detected by different laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches has specific advantages and limitations which must be taken into...

Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Adults

Current Oncology

The tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib were recently approved in Canada for the treatment of solid tumours harbouring neurotrophic tyrosine receptor kinase (NTRK) gene fusions. These NTRK gene fusions are oncogenic drivers found in most tumour types at a low frequency (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., secretory carcinoma of the salivary gland and of the breast). They are generally mutually exclusive of other common oncogenic drivers. Larotrectinib and entrectinib have demonstrated impressive overall response rates and tolerability in Phase I/II trials in patients with TRK fusion cancer with no other effective treatment options. Given the low frequency of TRK fusion cancer and the heterogeneous molecular testing landscape in Canada, identifying and optimally managing such patients represents a new challenge. We provide a Canadian consensus on when and how to test for NTRK gene fusions and when t...

Systematic review of neurotrophic tropomyosin-related kinase inhibition as a tumor-agnostic management strategy

Future Oncology, 2020

Aim: To conduct a systematic review and meta-analysis feasibility of clinical, quality of life and economic evidence for neurotrophic tropomyosin-related receptor tyrosine kinases ( NTRK) inhibitors in patients with NTRK gene fusion-positive tumors. Materials & methods: Databases were searched for studies on NTRK inhibitors in adult and pediatric patients. Results: 27 publications reported clinical data for seven interventions. Efficacy/safety data were available for two interventions only. Four trials each reported data for larotrectinib and entrectinib with pooled analyses reporting objective response rates of 75% (95% CI: 61–85) and 57.4% (43.2–70.8), respectively. No publications reported economic or quality of life evidence. Conclusion: Preliminary data demonstrate that NTRK inhibitors are well tolerated and show impressive clinical benefit; corroboration of existing studies and real-world data are required.

Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung

Human Mutation, 2008

The neurotrophic tyrosine receptor kinase (NTRK) family is potentially implicated in tumorigenesis and progression of several neoplastic diseases, including lung cancer. We investigated a large number of pulmonary neuroendocrine tumors (PNETs) and non-small cell lung carcinomas (NSCLCs) without morphological evidence of neuroendocrine differentiation for mutations in the NTRK gene family. A total of 538 primary lung carcinomas, including 17 typical carcinoids (TCs), 10 atypical carcinoids (ACs), 39 small cell lung carcinomas (SCLCs), 29 large cell neuroendocrine carcinomas (LCNECs), and 443 NSCLCs were evaluated by single-strand conformation polymorphism (SSCP) and sequencing of the tyrosine kinase domain (TKD) of NTRK1, NTRK2, and NTRK3. The NTRK1 gene was never found to be mutated. A total of 10 somatic mutations were detected in NTRK2 and NTRK3, mostly located in the activating and catalytic loops. NTRK mutations were seen in 9 (10%) out of 95 PNETs but in 0 out of 443 NSCLCs investigated. No mutations were observed in TCs, ACs, and SCLCs. Interestingly, all the mutations were restricted to the LCNEC histotype, in which they accounted for 31% of cases. A mutational analysis, performed after microdissection of LCNECs combined with adenocarcinoma (ADC), showed that only neuroendocrine areas were positive, suggesting that NTRK mutations are involved in the genesis of the neuroendocrine component of combined LCNECs. Our data indicate that somatic mutations in the TKD of NTRK genes are frequent in LCNECs. Such mutational events could represent an important step in the cancerogenesis of these tumors and may have potential implications for the selection of patients for targeted therapy. Hum Mutat 29(5), 609–616, 2008. © 2008 Wiley-Liss, Inc.

Activity of Entrectinib in a Patient With the First Reported NTRK Fusion in Neuroendocrine Cancer

Journal of the National Comprehensive Cancer Network : JNCCN, 2017

Despite advances in genomic analysis, the molecular origin of neuroendocrine tumors (NETs) is complex and poorly explained by described oncogenes. The neurotrophic TRK family, including NTRK1, 2, and 3, encode the proteins TRKA, TRKB, TRKC, respectively, involved in normal nerve development. Because NETs develop from the diffuse neuroendocrine system, we sought to determine whether NTRK alterations occur in NETs and whether TRK-targeted therapy would be effective. A patient with metastatic well-differentiated NET, likely of the small intestine, was enrolled on the STARTRK2 trial (ClinicalTrials.gov identifier: NCT02568267) and tissue samples were analyzed using an RNA-Seq next-generation sequencing platform. An ETV6:NTRK3 fusion was identified and therapy was initiated with the investigational agent entrectinib, a potent oral tyrosine kinase inhibitor of TRKA, TRKB, and TRKC. Upon treatment with entrectinib, the patient experienced rapid clinical improvement; his tumor response was ...