Anoxia in southern Benguela during the autumn of 2009 and its linkage to a bloom of the dinoflagellate Ceratium balechii (original) (raw)

Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system

Journal of Geophysical Research: Oceans, 2014

Acquisition of high resolution time series of water column and bottom dissolved oxygen (DO) concentrations inform the dynamics of oxygen depletion in St Helena Bay in the southern Benguela upwelling system at several scales of variability. The bay is characterized by seasonally recurrent hypoxia (<1.42 ml l 21 ) associated with a deep pool of oxygen-depleted water and episodic anoxia (<0.02 ml l 21 ) driven by the nearshore (<20 m isobath) decay of red tide. Coastal wind forcing influences DO concentrations in the nearshore through its influence on bay productivity and the development of red tides; through shoreward advection of the bottom pool of oxygen-depleted water as determined by the upwelling-downwelling cycle; and through its control of water column stratification and mixing. A seasonal decline in bottom DO concentrations of 1.2 ml l 21 occurs with a concurrent expansion of the bottom pool of oxygen depleted water in St Helena Bay. Upwelling of this water into the nearshore causes severe drops in DO concentration (<0.2 ml l 21 ), particularly during end-of-season upwelling, resulting in a significant narrowing of the habitable zone. Episodic anoxia through the entire water column is caused by localized degradation of red tides within the confines of the shallow nearshore environment. Oxygenation of the nearshore is achieved by ventilation of the water column particularly with the onset of winter mixing. No notable changes are evident in comparing recent measures of bottom DO concentrations in St Helena Bay to data collected in the late 1950s and early 1960s.

Suffocating Phytoplankton, Suffocating Waters—Red Tides and Anoxia

Frontiers in Marine Science

The dynamics of O 2 depletion in exceptional dinoflagellate blooms, often referred to as red tides or harmful algal blooms (HABs), was investigated in St. Helena Bay in the southern Benguela upwelling system in 2013. The transition to bloom decay and anoxia was examined through determination of O 2-based productivity and respiration rates. Changes in O 2 concentrations in relation to bloom metabolism were tracked by fast response optical sensors following incubation of red tide waters in large volume light-and-dark polycarbonate carboys. Concurrent measurements of nutrients and nutrient uptake rates served to assess the role of nutrient stressors in community metabolism and bloom mortality. The estimates of community productivity and respiration are among the highest values recorded. Nutrient concentrations were found to be low and were unlikely to meet the demands of the bloom as dictated by the rates of nutrient uptake. Ratios of community respiration to gross production were particularly high ranging from 0.6 to 0.73 and are considered to be a function of the inherently high cellular respiration rates of dinoflagellates. Nighttime community respiration was shown to be capable of removing as much as 17.34 ml O l −1 2 from surface waters. These exceptional rates of O 2 utilization are likely in some cases to exceed the rate of O 2 replenishment via air-sea exchange thereby leading overnight to conditions of anoxia. These conditions of nighttime anoxia and nutrient starvation are likely triggers of cell death and bloom mortality further fueling the microbial foodweb and consumption of O 2 .

Phytoplankton dynamics and bottom water oxygen during a large bloom in the summer of 2011

2012 Oceans, 2012

During the summer of 2011 a large phytoplankton bloom occurred off the New Jersey coast, which was monitored using an existing ocean observatory. There was public concern about the root causes of the phytoplankton bloom and whether it reflected anthropogenic loading of nutrients from the Hudson River or whether it reflected coastal upwelling. We used the MARACOOS network to determine what were the likely drivers of the phytoplankton bloom. The bloom was studied using satellites, HF radar, a Hydroid REMUS and Webb Slocum gliders. Chlorophyll concentrations were over an order of magnitude larger than the decadal mean of ocean color data and the bloom was initiated by upwelling winds throughout the month of July that continued to dominate the wind patterns until the passage of Hurricane Irene. The high concentrations of phytoplankton resulted in the supersaturated oxygen values in the surface waters; however the flux of organic matter resulted in oxygen saturation values of <60% in the coastal bottom waters, which is sufficient to stress benthic communities in the MAB. Discrete samples identified the bloom was dominated by mixed assemblages of motile dinoflagellates. The passage of Hurricane Irene increased the oxygen saturation at depth by close to 20%, but was not sufficient to terminate the bloom. A re-analysis of the CODAR clearly indicated that the shelf wide bloom most likely originated from nearshore the New Jersey coast. Upwelling provided the source water that fueled the bloom. Alternating winds transported the bloom offshore and across the Mid-Atlantic Bight. This is consistent with past studies that observed regions of recurrent hypoxia on the New Jersey inner shelf are more related to coastal upwelling than riverine inputs.

Dissolved oxygen consumption in a fjord-like estuary, Macquarie Harbour, Tasmania

Estuarine, Coastal and Shelf Science, 2020

Microbial respiration of organic matter (OM) is a key driver of deoxygenation and hypoxia. In fjord-like estuaries with established aquaculture industries understanding drivers of oxygen demand, and the relative importance of different drivers, is crucial for improving fish farming management in those systems. We designed a study to examine patterns of pelagic oxygen demand (POD) in a fjord-like estuary on the west coast of Tasmania, Macquarie Harbour, and relate those observations to physical forcings and major OM sources. Monthly water column sampling and bottle incubation experiments were conducted from June to November 2017. Water was collected throughout the harbour including river and oceanic endmembers as well as transects leading away from fish farms. Water was incubated from 4 different depths spanning the surface water to the seabed. Regression modelling was used to examine the relationship between POD, riverine OM loading, proximity to fish farms and the major system endmembers, depth, harbour region, concentration of dissolved oxygen, and month. POD reached rates as high as 0.108 mg L − 1 hour − 1 with the greatest POD observed above the halocline and during high river flow/OM loading months. Regression modelling showed that important drivers of POD are spatially specific along vertical and longitudinal gradients. The importance of riverine OM loading waned with depth primarily due to mixing dynamics of dissolved organic carbon across the halocline. Proximity to fish farms was an important but localized explanatory variable for POD in the halocline and basin waters, but not a significant driver of POD compared to the Gordon River. Based on the POD rates observed in this study, hypoxia can be established in less than 9 days in the basin waters and is primarily driven by pelagic oxygen sinks (95%-98%), not sediment sinks. It is crucial that aquaculture management accounts for natural, and/or preexisting, variation in endmember OM loading and its effect on DO dynamics, in these systems.

Nutrient pulses, plankton blooms, and seasonal hypoxia in western Long Island Sound

Estuaries and Coasts, 2001

Development of seasonal hypoxia was studied weekly in the western narrows of Long Island Sound (WLIS) during the summers of 1992 and 1993 by measuring hydrographic properties, biological oxygen demand (BOD), biomass, production, and mortality of phytoplankton and bacterioplankton in the water column. Dissolved oxygen in bottom waters was low and variable during stratified periods (19-51% saturation), oscillating in and out of hypoxic conditions (defined as Ͻ 3 mg O 2 l Ϫ1 or 94 M O 2 ). Hypoxia was more prevalent in 1993 than in 1992, corresponding to greater water column stratification in 1993. Microbial BOD in bottom waters appeared to be fueled by delivery of autochthonous carbon from phytoplankton blooms rather than allochthonous carbon input. Phytoplankton production responded to elevated NH 4 ؉ concentrations, especially when the mixed layer was shallow. NH 4 ؉ concentrations generally varied as a function of the preceding week's rainfall (r 2 ‫؍‬ 0.765). Bacterial production did not covary with phytoplankton production, yet was closely correlated with particulate organic carbon, which was chlorophyll-rich. Results indicate that the timing and severity of hypoxia development are strongly coupled to allochthonous input of NH 4 ؉ after heavy precipitation. Observations illustrate for the first time that bottom waters in this system oscillate in and out of hypoxia on an almost weekly basis rather than sustain them over the entire stratified period. The frequency of these oscillations depends upon variations in nutrients, planktonic production and export, and bottom water ventilation.

Short-term alteration of biotic and abiotic components of the pelagic system in a shallow bay produced by a strong natural hypoxia event

In January 2008 there was an intensive and extensive upwelling event in the southern Hum-boldt Current System. This event produced an intrusion of water with low dissolved oxygen into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied and evaluated the effect of the hypoxic water in the bay on the abundance of macrozoo-plankton, nanoplankton and microphytoplankton, the concentration of several nutrients and hydrographic conditions. At the beginning of the hypoxia event the water column had very low dissolved oxygen concentrations (<0.5 mL O 2 L-1), low temperatures and high salinity which are characteristics of the oxygen minimum zone from the Humboldt Current System. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the abundance of nano-and microphytoplankton were at their lowest, the latter also with the lowest proportion of live organisms. Macrozooplankton had the greatest abundance during hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event generated a strong short-term alteration of all biotic and abiotic components of the pelagic system in Coliumo Bay and the neighboring coastal zone. These negative effects associated with strong natural hypoxia events could have important consequences for the productivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as suggested by several models, winds favorable to upwelling should increase due to climate change. The effects of natural hypoxia in this coastal zone can be dramatic especially for pelagic and benthic species not adapted to endure conditions of low dissolved oxygen.

Nutrient pulses, plankton blooms and hypoxia in western Long Island Sound

Development of seasonal hypoxia was studied weekly in the western narrows of Long Island Sound (WLIS) during the summers of 1992 and 1993 by measuring hydrographic properties, biological oxygen demand (BOD), biomass, production, and mortality of phytoplankton and bacterioplankton in the water column. Dissolved oxygen in bottom waters was low and variable during stratified periods (19-51% saturation), oscillating in and out of hypoxic conditions (defined as Ͻ 3 mg O 2 l Ϫ1 or 94 M O 2 ). Hypoxia was more prevalent in 1993 than in 1992, corresponding to greater water column stratification in 1993. Microbial BOD in bottom waters appeared to be fueled by delivery of autochthonous carbon from phytoplankton blooms rather than allochthonous carbon input. Phytoplankton production responded to elevated NH 4 ؉ concentrations, especially when the mixed layer was shallow. NH 4 ؉ concentrations generally varied as a function of the preceding week's rainfall (r 2 ‫؍‬ 0.765). Bacterial production did not covary with phytoplankton production, yet was closely correlated with particulate organic carbon, which was chlorophyll-rich. Results indicate that the timing and severity of hypoxia development are strongly coupled to allochthonous input of NH 4 ؉ after heavy precipitation. Observations illustrate for the first time that bottom waters in this system oscillate in and out of hypoxia on an almost weekly basis rather than sustain them over the entire stratified period. The frequency of these oscillations depends upon variations in nutrients, planktonic production and export, and bottom water ventilation.

The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary

Estuaries, 2003

of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.