A new nonlinear equation in the shallow water wave problem (original) (raw)
Abstract
In the paper a new nonlinear equation describing shallow water waves with the topography of the bottom directly taken into account is derived. This equation is valid in the weakly nonlinear, dispersive and long wavelength limit. Some examples of soliton motion for various bottom shapes obtained in numerical simulations according to the derived equation are presented.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (21)
- Korteveg, D.J. and de Vries, G., Phil. Mag. (5), 39, (1895) 422-443.
- Drazin, P.G. and Johnson, R.S., Solitons: An Introduction, Cambridge University Press, 1989.
- Infeld,E. and Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge University Press, 1990.
- Ablowitz, M.J. and Clarkson, P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.
- Hirota, R., The Direct Method in Soliton Theory, Cambridge University Press, 2004 (first published in Japanese 1992).
- Remoissenet, M., Waves Called Solitons: Concepts and Experiments, Springer, 1999.
- M.J. Ablowitz, M.J., Prinari, B. and Trubatch, A.D., Discrete and Continuous Nonlinear Schrödinger systems, Cambridge University Press, 2004.
- Belashow, V.Yu. and Vladymirov, S.V., Solitary Waves in Dispersive Complex Media, Springer, 2005.
- Osborne, A.R., Nonlinear Ocean Waves and the Inverse Scattering Transform, Elsevier, 2010.
- Burde, G.I. and Sergyeyev, A., J. Phys. A: Math. Theor. 46, 075501 (2013).
- C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095-1097.
- Zabusky, N.J. and Kruskal, M.D., Phys. Rev. Lett. 15 (1965) 240-243. Zabusky, N.J., Phys. Rev. 168, (1968) 124-128.
- Grimshaw, R.H.J. and Smyth, N., J. Fluid. Mech. 169, (1986) 429-464.
- Smyth, N.F., Proc. R. Soc. Lond. A, 409, (1987) 79-97.
- Kamchatnov, A,M., Kuo, Y.-H., Lin, T.-C., Horng, T.-L., Gou, S.-C., Clift, R., El, G.A. and Grimshaw, R.H.J., Phys. Rev. E 86, 036605 (2012).
- Zhao, M., Teng, B. and Cheng, L., Ocean Eng. 31, (2004) 2047-2072, -Mitsosakis, D.E., J. Math. Comp. Simul. 80, (2009) 860-873.
- Green, A.E. and Naghdi, P.M., J. Fluid Mech., 78, (1976) 237-246.
- Nadiga, B.T., Margolin, L.G. and Smolarkiewicz, P.K., Phys. Fluids, 8, (1996) 2066-2077.
- Kim, J.W., Bai, K.J., Ertekin, R.C. and Webster, W.C., J. Eng. Math., 40, (2001) 17-42.
- Grimshaw, R., Pelinovsky, E., and Talipova, T., Geophys. Astrophys. Fluid Dynamics, 102, (2008) 179-194.
- Pelinovsky, E., Choi, B.H., Talipova, T., Woo, S.B., and Kim, D.C., Applied Math Computations, 217, (2010) 1704-1718.