A Noninvasive Comparison Study between Human Gliomas with IDH1 and IDH2 Mutations by MR Spectroscopy (original) (raw)

Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy

Journal of Neuro-Oncology, 2012

Mutations of the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are commonly found in primary brain cancers. We previously reported that a novel enzymatic activity of these mutations results in the production of the putative oncometabolite, R(-)-2-hydroxyglutarate (2-HG). Here we investigated the ability of magnetic resonance spectroscopy (MRS) to detect 2-HG production in order to non-invasively identify patients with IDH1 mutant brain tumors. Patients with intrinsic glial brain tumors (n = 27) underwent structural and spectroscopic magnetic resonance imaging prior to surgery. 2-HG levels from MRS data were quantified using LC-Model software, based upon a simulated spectrum obtained from a GAMMA library added to the existing prior knowledge database. The resected tumors were then analyzed for IDH1 mutational status by genomic DNA sequencing, Ki-67 proliferation index by immunohistochemistry, and concentrations of 2-HG and other metabolites by liquid chromatography-mass spectrometry (LC-MS). MRS detected elevated 2-HG levels in gliomas with IDH1 mutations compared to those with wild-type IDH1 (P = 0.003). The 2-HG levels measured in vivo with MRS were significantly correlated with those measured ex vivo from the corresponding tumor samples using LC-MS (r 2 = 0.56; P = 0.0001). Compared with wild-type tumors, those with IDH1 mutations had elevated choline (P = 0.01) and decreased glutathione (P = 0.03) on MRS. Among the IDH1 mutated gliomas, quantitative 2-HG values were correlated with the Ki-67 proliferation index of the tumors (r 2 = 0.59; P = 0.026). In conclusion, water-suppressed proton ( 1 H) MRS provides a non-invasive measure of 2-HG in gliomas, and may serve as a potential biomarker for patients with IDH1 mutant brain tumors. In addition to 2-HG, alterations in several other metabolites measured by MRS correlate with IDH1 mutation status.

2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas

Nature Medicine, 2012

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1, 2) have been demonstrated in the majority of World Health Organization grade 2 and grade 3 gliomas in adults. These mutations are associated with the accumulation of 2-hydroxyglutarate (2HG) within the tumor. Here we report the noninvasive detection of 2HG by proton magnetic resonance spectroscopy (MRS). The pulse sequence was developed and optimized with numerical and phantom analyses for 2HG detection. The concentrations of 2HG were estimated using spectral fitting in the tumors of 30 patients. Detection of 2HG correlated with mutations in IDH1 or IDH2 and with increased levels of D-2HG by mass spectrometry of resected tumor. Noninvasive detection of 2HG may prove to be a valuable diagnostic and prognostic biomarker.

Noninvasive Quantification of 2-Hydroxyglutarate in Human Gliomas with IDH1 and IDH2 Mutations

Cancer research, 2015

Mutations in the isocitrate dehydrogenase genes (IDH1/2) occur often in diffuse gliomas, where they are associated with abnormal accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Monitoring 2-HG levels could provide prognostic information in this disease, but detection strategies that are noninvasive and sufficiently quantitative have yet to be developed. In this study, we address this need by presenting a proton magnetic resonance spectroscopy ((1)H-MRS) acquisition scheme that uses an ultrahigh magnetic field (≥7T) capable of noninvasively detecting 2-HG with quantitative measurements sufficient to differentiate mutant cytosolic IDH1 and mitochondrial IDH2 in human brain tumors. Untargeted metabolomics analysis of in vivo (1)H-MRS spectra discriminated between IDH-mutant tumors and healthy tissue, and separated IDH1 from IDH2 mutations. High-quality spectra enabled the quantification of neurochemical profiles consisting of at least eight metabolites, including 2-HG, gl...

Noninvasive assessment of isocitrate dehydrogenase mutation status in cerebral gliomas by magnetic resonance spectroscopy in a clinical setting

Journal of neurosurgery, 2017

OBJECTIVE Mutations in the isocitrate dehydrogenase (IDH) genes are of proven diagnostic and prognostic significance for cerebral gliomas. The objective of this study was to evaluate the clinical feasibility of using a recently described method for determining IDH mutation status by using magnetic resonance spectroscopy (MRS) to detect the presence of 2-hydroxyglutarate (2HG), the metabolic product of the mutant IDH enzyme. METHODS By extending imaging time by 6 minutes, the authors were able to include a point-resolved spectroscopy (PRESS) MRS sequence in their routine glioma imaging protocol. In 30 of 35 patients for whom this revised protocol was used the lesions were subsequently diagnosed histologically as gliomas. Of the remaining 5 patients, 1 had a gangliocytoma, 1 had a primary CNS lymphoma, and 3 had nonneoplastic lesions. Immunohistochemistry and/or polymerase chain reaction were used to detect the presence of IDH mutations in the glioma tissue resected. RESULTS In vivo M...

In situ metabolic profiling of IDH-mutant glioma

2019

Heterozygous mutations in NADP-dependent isocitrate dehydrogenases (IDH) define the large majority of diffuse gliomas and are associated with hypermethylation of DNA and chromatin. The metabolic dysregulations imposed by these mutations, whether dependent or not on the oncometabolite D-2-hydroxyglutarate (D2HG), are less well understood. Here, we applied mass spectrometry imaging on intracranial patient-derived xenografts of IDH-mutant versus IDH wild-type glioma to profile the distribution of metabolites at high anatomical resolution in situ. This approach was complemented by in vivo tracing of labeled nutrients followed by liquid chromatography–mass spectrometry (LC-MS) analysis. Selected metabolites were verified on clinical specimen. Our data identify remarkable differences in the phospholipid composition of gliomas harboring the IDH1 mutation. Moreover, we show that these tumors are characterized by reduced glucose turnover and a lower energy potential, correlating with their r...

Non-Invasive Assessment of Isocitrate Dehydrogenase-Mutant Gliomas Using Optimized Proton Magnetic Resonance Spectroscopy on a Routine Clinical 3-Tesla MRI

Purpose: The isocitrate dehydrogenase (IDH) mutation has become one of the most important prognostic biomarkers in glioma management, indicating better treatment response and prognosis. IDH mutations confer neomorphic activity leading to the conversion of alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG). The purpose of this study was to investigate the clinical potential of proton MR spectroscopy (1H-MRS) in identifying IDH-mutant gliomas by detecting characteristic resonances of 2HG and its complex interplay with other clinically relevant metabolites. Materials and methods: Thirty-two patients with suspected infiltrative glioma underwent a single-voxel (SVS, n = 17) and/or single-slice-multivoxel (1H-MRSI, n = 15) proton MR spectroscopy (1H-MRS) sequence with an optimized echo-time (97 ms) on 3T-MRI. Spectroscopy data were analyzed using the linear combination (LC) model. Cramér-Rao lower bound (CRLB) values of <40% were considered acceptable for detecting 2HG and <20% for other metabolites. Immunohistochemical analyses for determining IDH mutational status were subsequently performed from resected tumor specimens and findings were compared with the results from spectral data. Mann-Whitney and chi-squared tests were performed to ascertain differences in metabolite levels between IDH-mutant and IDH-wild-type gliomas. Receiver operating characteristic (ROC) curve analyses were also performed. Results: Data from eight cases were excluded due to poor spectral quality or non-tumor-related etiology, and final data analyses were performed from 24 cases. Of these cases, 9/12 (75%) were correctly identified as IDH-mutant or IDH-wildtype gliomas through SVS and 10/12 (83%) through 1H-MRSI with an overall concordance rate of 79% (19/24). The sensitivity, specificity, positive predictive value, and negative predictive value were 80%, 77%, 86%, and 70%, respectively. The metabolite 2HG was found to be significant in predicting IDH-mutant gliomas through the chi-squared test (p < 0.01). The IDH-mutant gliomas also had a significantly higher NAA/Cr ratio (1.20 ± 0.09 vs. 0.75 ± 0.12 p = 0.016) and lower Glx/Cr ratio (0.86 ± 0.078 vs. 1.88 ± 0.66; p = 0.029) than those with IDH wild-type gliomas. The areas under the ROC curves for NAA/Cr and Glx/Cr were 0.808 and 0.786, respectively. Conclusions: Noninvasive optimized 1H-MRS may be useful in predicting IDH mutational status and 2HG may serve as a valuable diagnostic and prognostic biomarker in patients with gliomas.

Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation

Neuro-Oncology, 2012

The arginine 132 (R132) mutation of isocitrate dehydrogenase -1 (IDH1 R132 ) results in production of 2-hydroxyglutarate (2-HG) and is associated with a better prognosis compared with wild-type (WT) in glioma patients. The majority of lower-grade gliomas express IDH1 R132 , whereas this mutation is rare in grade IV gliomas. The aim of this study was to noninvasively investigate metabolic and physiologic changes associated with the IDH1 mutation in a mouse glioma model. Using a 7T magnet, we compared MRI and proton magnetic resonance spectroscopy (MRS) in U87 glioma cells overexpressing either the mutated IDH1 R132 or IDH1 wild-type (IDH1 WT ) gene in a mouse flank xenograft model. Flank tumors overexpressing IDH1 R132 showed a resonance at 2.25 ppm corresponding to the 2-HG peak described for human IDH1 R132 gliomas. WT tumors lacked this peak in all cases. IDH1 mutant tumors demonstrated significantly reduced glutamate by in vivo MRS. There were no significant differences in T 2 , apparent diffusion coefficient (ADC), or perfusion values between the mutant and IDH1 WT tumors. The IDH1 R132 mutation results in 2-HG resonance at 2.25 ppm and a reduction of glutamate levels as determined by MRS. Our results establish a model system where 2-HG can be monitored noninvasively, which should be helpful in validating 2-HG levels as a prognostic and/or predictive biomarker in glioma.

Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI

Neuro-Oncology, 2019

Background. Isocitrate dehydrogenase 1 (IDH1) mutant gliomas are thought to have distinct metabolic characteristics, including a blunted response to hypoxia and lower glycolytic flux. We hypothesized that non-invasive quantification of abnormal metabolic behavior in human IDH1 mutant gliomas could be performed using a new pH-and oxygen-sensitive molecular MRI technique. Methods. Simultaneous pH-and oxygen-sensitive MRI was obtained at 3T using amine CEST-SAGE-EPI. The pH-dependent measure of the magnetization transfer ratio asymmetry (MTR asym) at 3 ppm and oxygen-sensitive measure of R 2 ' were quantified in 90 patients with gliomas. Additionally, stereotactic, image-guided biopsies were performed in 20 patients for a total of 52 samples. The association between imaging measurements and hypoxiainducible factor 1 alpha (HIF1α) expression was identified using Pearson correlation analysis. Results. IDH1 mutant gliomas exhibited significantly lower MTR asym at 3 ppm, R 2 ', and MTR asym xR 2 ' (P = 0.007, P = 0.003, and P = 0.001, respectively). MTR asym xR 2 ' could identify IDH1 mutant gliomas with a high sensitivity (81.0%) and specificity (81.3%). HIF1α was positively correlated with MTR asym at 3 ppm, R 2 ' and MTR asym xR 2 ' in IDH1 wild type (r = 0.610, P = 0.003; r = 0.667, P = 0.008; r = 0.635, P = 0.006), but only MTR asym xR 2 ' in IDH1 mutant gliomas (r = 0.727, P = 0.039). Conclusions. IDH1 mutant gliomas have distinct metabolic and microenvironment characteristics compared with wild type gliomas. An imaging biomarker combining tumor acidity and hypoxia (MTR asym xR 2 ') can differentiate IDH1 mutation status and is correlated with tumor acidity and hypoxia. Yao et al. Molecular imaging of IDH1 mutant gliomas Neuro-Oncology Key Points 1. A combined MRI biomarker for acidity and hypoxia can differentiate IDH1 mutation status.

The Association between Whole‐Brain MR Spectroscopy and IDH Mutation Status in Gliomas

Journal of Neuroimaging, 2019

BACKGROUND AND PURPOSE: Mutations in isocitrate dehydrogenase (IDH) have a direct effect on gliomagenesis. The purpose of this study is to quantify differences in brain metabolites due to IDH mutations. METHODS: Magnetic Resonance Spectroscopic Imaging (MRSI) was performed in 35 patients with gliomas of different grade and varied IDH mutation status. Volumes of interest (VOIs) for active tumor (tVOI), peritumoral area (pVOI), and contralateral normal-appearing white matter (cVOI) were created. Metabolite ratios of Choline (Cho) to both N-acetylaspartate (NAA) and Creatine (Cr) were estimated. Ratios of Glutamate/Glutamine complex (Glx) and myoinositol (mIno) to Cr were also quantified. General linear models (GLMs) were used to estimate the effects of IDH mutation on metabolite measures, with age, gender, and tumor grade used as covariates. RESULTS: GLM analysis showed that maximum Cho/NAA and Cho/Cr in the tVOI were significantly (P < .05) higher in IDH mutant lesions as compared to wild-type. In the pVOI, mean Cho/Cr was found to be significantly different among IDH mutant and wild-type gliomas. Mean Cho/NAA (P = .306) and Cho/Cr (P = .292) within the tVOI were not significantly different. Ratios of Glx/Cr and mIno/Cr in any region showed no significant differences between IDH mutant and wild-type gliomas. No significant differences in metabolite ratios were seen in the cVOI between IDH mutants and wild-types. CONCLUSION: IDH mutation's effect in gliomas show an increase in Cho in the tumor and perilesional regions as compared to wild-type lesions but do not show widespread changes across the brain.