Community Structure in Graphs (original) (raw)

Community detection in graphs

The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

[PDF]Physics Reports Community detection in graphs

2010

The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

AN INTRODUCTION TO COMMUNITY DETECTION IN GRAPHS

In both society and nature, communities have always been ubiquitous as elementary forms of organization and have been also accepted intuitively as the niches and loci inside which humans (or possibly other living beings too) place and identify themselves according to various contextual, geographical, historical, cultural, political etc. conditions.

Self-contained algorithms to detect communities in networks

European Physical Journal B, 2004

The investigation of community structures in networks is an important issue in many domains and disciplines. In this paper we present a new class of local and fast algorithms which incorporate a quantitative definition of community. In this way the algorithms for the identification of the community structure become fully self-contained and one does not need additional non-topological information in order to evaluate the accuracy of the results. The new algorithms are tested on artificial and real-world graphs. In particular we show how the new algorithms apply to a network of scientific collaborations both in the unweighted and in the weighted version. Moreover we discuss the applicability of these algorithms to other non-social networks and we present preliminary results about the detection of community structures in networks of interacting proteins.

"Communities in Networks: An empirical and comparative Study of some Detection Methods"

Graphs or networks are mathematical structures that consist of elements that can be pairwise linked if some sort of interaction exists between them. Therefore, they can be used as an abstraction to represent complex systems in various fields of research. Several statistical properties are common to many real-world networks, either being natural or man-made. A specific feature also shared by many networks is that they often exhibit internal substructures, called communities, consisting of cohesive groups of elements which are densely connected to each other but only sparsely or not connected at all to other communities of the graph. Community detection is today an active and interdisciplinary field of research. This thesis focuses on criteria that could allow a reliable detection of these substructures and on methods based on these criteria. In the first research question, we will cover and compare the performance of methods that return an optimal number of communities: The so-called ... Document type : Mémoire (Thesis) Référence bibliographique Jungers, Baptiste. Communities in Networks: An empirical and comparative Study of some Detection Methods. Louvain School of Management, Université catholique de Louvain, 2016.

Community structure in social and biological networks

Proceedings of The National Academy of Sciences, 2002

A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known-a collaboration network and a food web-and find that it detects significant and informative community divisions in both cases.

The stability of a graph partition: A dynamics-based framework for community detection

Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the communit...

Defining and identifying communities in networks

Proceedings of The National Academy of Sciences, 2004

The investigation of community structures in networks is an important issue in many domains and disciplines. This problem is relevant for social tasks (objective analysis of relationships on the web), biological inquiries (functional studies in metabolic and protein networks), or technological problems (optimization of large infrastructures). Several types of algorithms exist for revealing the community structure in networks, but a general and quantitative definition of community is not implemented in the algorithms, leading to an intrinsic difficulty in the interpretation of the results without any additional nontopological information. In this article we deal with this problem by showing how quantitative definitions of community are implemented in practice in the existing algorithms. In this way the algorithms for the identification of the community structure become fully self-contained. Furthermore, we propose a local algorithm to detect communities which outperforms the existing algorithms with respect to computational cost, keeping the same level of reliability. The algorithm is tested on artificial and real-world graphs. In particular, we show how the algorithm applies to a network of scientific collaborations, which, for its size, cannot be attacked with the usual methods. This type of local algorithm could open the way to applications to large-scale technological and biological systems.