Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression (original) (raw)

The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer

Cancers, 2021

Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review f...

Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside

Cancers

Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we dis...

The involvement of exosomes in the diagnosis and treatment of pancreatic cancer

Molecular Cancer, 2020

At the moment, pancreatic cancer is among the deadliest gastrointestinal diseases, and pancreatic cancer growth is a complex biological process that is based on different kinds of genes. Exosomes are extracellular vesicles containing microRNAs (miRNAs), messenger RNA (mRNA), and proteins, they act as the most prominent mediator of intercellular communication, and they regulate, instruct, and re-educate their surrounding microenvironment and target specific organs. Due to accumulative evidence proved that exosomes are involved in metastasis, cell proliferation, EMT, angiogenesis, and TME of pancreatic cancer, exosomes are crucial potential candidates to detect pancreatic cancer early. This review aims to convey the current understanding of the main functions employed by exosomes in early diagnosis and treatment of pancreatic cancer.

New insights in the composition of extracellular vesicles from pancreatic cancer cells: implications for biomarkers and functions

Proteome science, 2014

Pancreatic cancer development is associated with characteristic alterations like desmoplastic reaction and immune escape which are mediated by the cell-cell communication mechanism and by the microenvironment of the cells. The whole of released components are important determinants in these processes. Especially the extracellular vesicles released by pancreatic cancer cells play a role in cell communication and modulate cell growth and immune responses. Here, we present the proteomic description of affinity purified extracellular vesicles from pancreatic tumour cells, compared to the secretome, defined as the whole of the proteins released by pancreatic cancer cells. The proteomic data provide comprehensive catalogues of hundreds of proteins, and the comparison reveals a special proteomic composition of pancreatic cancer cell derived extracellular vesicles. The functional analysis of the protein composition displayed that membrane proteins, glycoproteins, small GTP binding proteins ...

Tumor-derived extracellular vesicles and microRNAs: Functional roles, diagnostic, prognostic and therapeutic options

Cytokine & Growth Factor Reviews

In the last few years cancer research more and more highlighted the importance of cell to cell communication in tumor progression. Among many other functional mechanisms, results evidenced the importance of miRNAs loaded into exosomes and their actions as mediators in intercellular communication, either in the tumor microenvironment or at distant sites. Deregulation of miRNA levels is a prerogative of cancer cells and is reflected in the miRNA cargo of tumor derived exosomes. Thus, learning of circulating miRNA activities add the missing piece we need to understand some unclear aspects of cancer biology. Here we summarized the current knowledge on exosome transfer capabilities between cancer cells and all the cells constituting tumor microenvironment with a particular focus on their miRNA cargos and regulatory functions. The clinical relevance of these molecular aspects is emphasized by numerous cell interactions that ultimately result in normal cell function defeat, relevant to increase tumor malignancy. The quantitative and qualitative evaluation of circulating miRNAs offers new perspective for better diagnosis and prognosis of cancer patients, eventually improving their management. 2. Exosome biogenesis and composition The term exosome (EXO) is referred to small vesicles (40−150 nm)

MiR-519a/522-5p from pancreatic cancer-secreted exosomes promotes tumor invasion by enhancing Warburg effect

Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with poor prognosis. Exploring novel serum biomarkers and the underlying mechanism is crucial for the early diagnosis and precise therapy of PDAC. Methods Exosomes were isolated from serum samples of 92 PDAC patients and 44 healthy subjects. Serum exosomal microRNAs (exo-miRNAs) were detected by small RNA sequencing, verified by qRT-PCR, and their diagnostic performance and prognostic value were evaluated. In vitro experiments and orthotopic tumor mouse models were conducted to investigate the effect of miR-519a/522-5p on PDAC. Integrated transcriptomics and metabolomics were used to explore the underlying mechanism of miR-519a/522-5p. Results Compared to the healthy control, all three PDAC subgroups (stage I-III) displayed a specific deregulated serum exo-miRNA profile. A panel of 3 serum exo-miRNAs (let-7g-3p, miR-490-5p, and miR-519a/522-5p) was established as novel diagnostic biomarkers for PDAC...

Extracellular Vesicles As miRNA Nano-Shuttles: Dual Role in Tumor Progression

Targeted oncology, 2018

Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic potential by expressing miRNAs with oncogenic function, whilst exporting miRNAs with tumor suppressor roles out of the cells. Importantly, treatment of cancer cells with specific natural and chemical compounds could induce the elimination of miRNAs with oncogenic function, thereby reducing their aggressive...

Impact of exosome therapy on pancreatic cancer and its progression

Medical Oncology

Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as...

Exosomes in the Treatment of Pancreatic Cancer: A Moonshot to PDAC Treatment?

International Journal of Molecular Sciences, 2022

Pancreatic Ductal Adenocarcinoma (PDAC) constitutes a leading cause of cancer death globally. Its mortality remains unaltered despite the considerable scientific progress made in the fields of diagnostics and treatment. Exosomes comprise of small extracellular vesicles secreted by nearly all cells; their cargo contains a vast array of biomolecules, such as proteins and microRNAs. It is currently established that their role as messengers is central to a plethora of both physiologic and pathologic processes. Accumulating data have shed light on their contributions to carcinogenesis, metastasis, and immunological response. Meanwhile, the advancement of personalized targeted therapies into everyday clinical practice necessitates the development of cost-efficient treatment approaches. The role of exosomes is currently being extensively investigated towards this direction. This review aims to summarize the current pre-clinical and clinical evidence regarding the effects of exosomal applic...

Proteomic Profiling of Small Extracellular Vesicles Secreted by Human Pancreatic Cancer Cells Implicated in Cellular Transformation

Scientific Reports

Extracellular vesicles secreted from tumor cells are functional vehicles capable of contributing to intercellular communication and metastasis. A growing number of studies have focused on elucidating the role that tumor-derived extracellular vesicles play in spreading pancreatic cancer to other organs, due to the highly metastatic nature of the disease. We recently showed that small extracellular vesicles secreted from pancreatic cancer cells could initiate malignant transformation of healthy cells. Here, we analyzed the protein cargo contained within these vesicles using mass spectrometry-based proteomics to better understand their makeup and biological characteristics. Three different human pancreatic cancer cell lines were compared to normal pancreatic epithelial cells revealing distinct differences in protein cargo between cancer and normal vesicles. Vesicles from cancer cells contain an enrichment of proteins that function in the endosomal compartment of cells responsible for v...