Targeting ATR/CHK1 pathway in acute myeloid leukemia to overcome chemoresistance (original) (raw)
Related papers
2016
Despite intense efforts, the cure rates of children and adults with AML remain unsatisfactory in large part due to resistance to chemotherapy. Whilst cytogenetic risk stratification proved valuable in identifying causes of therapy failure and disease relapse, cytogenetically normal AML remains the most prevalent disease type, with significant heterogeneity of clinical outcomes, including primary chemoresistance. Using targeted sequencing of 670 genes recurrently mutated in hematologic malignancies, we investigated the genetic basis of primary chemotherapy resistance and remission induction failure of 107 primary cases obtained at diagnosis from children and adults with cytogenetically normal AML. Comparative analysis revealed mutations ofSETBP1, ASXL1andRELNto be significantly enriched at diagnosis in primary induction failure as compared to remission cases. In addition, this analysis revealed novel genomic alterations not previously described in AML, as well as distinct genes that ...
Targeting novel signaling pathways for resistant acute myeloid leukemia
Molecular genetics and metabolism, 2014
Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of acute leukemia diagnosed in adults and the second most common type in children. The overall survival is poor and treatment is associated with significant complications and even death. In addition, a significant number of patients will not respond to therapy or relapse. In this review, several new signaling proteins aberrantly regulated in AML are described, including CREB, Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic agents will provide novel approaches to treat AML.
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
Nature Communications
Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the redistribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.
Genetic and Transcriptional Contributions to Relapse in Normal Karyotype Acute Myeloid Leukemia
Blood Cancer Discovery, 2021
To better understand clonal and transcriptional adaptations after relapse in patients with acute myeloid leukemia (AML), we collected presentation and relapse samples from six normal karyotype AML cases. We performed enhanced whole-genome sequencing to characterize clonal evolution, and deep-coverage single-cell RNA sequencing on the same samples, which yielded 142,642 high-quality cells for analysis. Identifying expressed mutations in individual cells enabled us to discriminate between normal and AML cells, to identify coordinated changes in the genome and transcriptome, and to identify subclone-specific cell states. We quantified the coevolution of genetic and transcriptional heterogeneity during AML progression, and found that transcriptional changes were significantly correlated with genetic changes. However, transcriptional adaptation sometimes occurred independently, suggesting that clonal evolution does not represent all relevant biological changes. In three cases, we identif...
Molecular targets in acute myelogenous leukemia
Blood Reviews, 2003
Acute myeloid leukemia (AML) remains the most common form of leukemia and the most common cause of leukemia death. Although conventional chemotherapy can cure between 25 and 45% of AML patients, most patients will either die of relapse or die from the complications associated with treatment. Thus, more specific and less toxic treatments for AML patients are needed. Recently, a small molecular inhibitor (STI571 or Gleevec) that targets the BCR-ABL gene was found to have a dramatic clinical effect in patients with chronic myelogenous leukemia (CML). These results have encouraged investigators to search for additional small molecular inhibitors and other targeted therapies that may be applicable to other forms of leukemia. In this review, we examine some of the signaling pathways that are aberrantly regulated in AML, focusing on the tyrosine kinase/RAS/MAP kinase and JAK/STAT pathways. After reviewing these two pathways, we explore some of the targeted therapies directed at these pathways that are under development for AML, many of which are already in clinical trials.
Leukemia Research and Treatment, 2012
Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder characterized by the presence of the Philadelphia chromosome which resulted from the reciprocal translocation between chromosomes 9 and 22. The pathogenesis of CML involves the constitutive activation of the BCR-ABL tyrosine kinase, which governs malignant disease by activating multiple signal transduction pathways. The BCR-ABL kinase inhibitor, imatinib, is the front-line treatment for CML, but the emergence of imatinib resistance and other tyrosine kinase inhibitors (TKIs) has called attention for additional resistance mechanisms and has led to the search for alternative drug treatments. In this paper, we discuss our current understanding of mechanisms, related or unrelated to BCR-ABL, which have been shown to account for chemoresistance and treatment failure. We focus on the potential role of the influx and efflux transporters, the inhibitor of apoptosis proteins, and transcription factor-mediated signals as feasib...
Blood Advances, 2021
Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi–whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Fina...
Cancer Research, 2009
Genomic instability in solid tumors participates in the oncogenetic process and is associated with the activation of the DNA damage response pathway. Here, we report the activation of the constitutive DNA damage and checkpoint pathway associated with complex karyotypes in samples from patients with acute myeloid leukemia (AML). We show that antagonizing CHK1 kinase with a small inhibitory compound or by RNA interference strongly reduces the clonogenic properties of high-DNA damage level AML samples, particularly those with complex karyotypes. Moreover, we observe a beneficial effect of CHK1 inhibition in high-DNA damage level AML samples treated with 1-β-D-arabinofuranosylcytosine. In contrast, CHK1 inhibition has no effect on the clonogenic properties of normal hematopoietic progenitors. All together, our results indicate that CHK1 inhibition may represent an attractive therapeutic opportunity in AML with complex karyotype. NOTE: Prognosis factor groups were established according the classification of Grimwade and Schlenk on the basis of the cytogenesis analysis (3, 4).