The emergence of metabolomics as a key discipline in the drug discovery process (original) (raw)
Related papers
Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics
Progress in nuclear magnetic resonance spectroscopy, 2017
Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique strengths. NMR requires minimal sample handling without the need for chromatography, is easily quantitative, and provides multiple means of metabolite identification, but is limited to detecting the most abundant metabolites (⩾1μM). Conversely, mass spectrometry has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and has a higher resolution (∼10(3)-10(4)) and dynamic range (∼10(3)-10(4)), but quantitation is a challenge and sample complexity may limit metabolite detection because of ion suppression. Consequently, liquid chromatography (LC) or gas ...
Metabolomics technologies and metabolite identification
TrAC Trends in Analytical Chemistry, 2007
Metabolomics studies rely on the analysis of the multitude of small molecules (metabolites) present in a biological system. Most commonly, metabolomics is heavily supported by mass spectrometry (MS) and nuclear magnetic resonance (NMR) as parallel technologies that provide an overview of the metabolome and high-power compound elucidation. Over and above large-scale analysis, a major effort is needed for unequivocal identification of metabolites. The combination of liquid chromatography (LC)-MS and NMR is a powerful methodology for identifying metabolites. Better chemical characterization of the metabolome will undoubtedly enlarge knowledge of any biological system.
F1000 - Post-publication peer review of the biomedical literature
A novel strategy is introduced that combines high-resolution mass spectrometry (MS) with NMR for the identification of unknown components in complex metabolite mixtures encountered in metabolomics. The approach first identifies the chemical formulas of the mixture components from accurate masses by MS and then generates all feasible structures (structural manifold) that are consistent with these chemical formulas. Next, NMR spectra of each member of the structural manifold are predicted and compared with the experimental NMR spectra in order to identify the molecular structures that match the information obtained from both the MS and NMR techniques. This combined MS/NMR approach was applied to E. coli extract where the approach correctly identified a wide range of different types of metabolites, including amino acids, nucleic acids, polyamines, nucleosides and carbohydrate conjugates. This makes this approach, which is termed SUMMIT MS/NMR, well suited for high-throughput applications for the discovery of new metabolites in biological and biomedical mixtures overcoming the need of experimental MS and NMR metabolite databases.
The future of NMR-based metabolomics
Current opinion in biotechnology, 2016
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
NMR Metabolomics Protocols for Drug Discovery
NMR-Based Metabolomics
Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective, and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is "fragile" and may be negatively impacted by improper sample collection, storage, and extraction procedures. Similarly, biologically irrelevant conclusions may result from incorrect data collection, preprocessing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol.
NMR and Metabolomics—A Roadmap for the Future
Metabolites
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies fo...
UPLC–MS for metabolomics: a giant step forward in support of pharmaceutical research
Drug Discovery Today, 2016
Metabolomics is a relatively new and rapidly growing area of post-genomic biological research. As use of metabolomics technology grows throughout the spectrum of drug discovery and development, and its applications broaden, its impact is expanding dramatically. This review seeks to provide the reader with a brief history of the development of metabolomics, its significance and strategies for conducting metabolomics studies. The most widely used analytical tools for metabolomics: NMR, LC-MS and GC-MS, are discussed along with considerations for their use. Herein, we will show how metabolomics can assist in pharmaceutical research studies, such as pharmacology and toxicology, and discuss some examples of the importance of metabolomics analysis in research and development.
The Current State of Drug Discovery and a Potential Role for NMR Metabolomics
Journal of Medicinal Chemistry, 2014
The pharmaceutical industry has significantly contributed to improving human health. Drugs have been attributed to both increasing life expectancy and decreasing health care costs. Unfortunately, there has been a recent decline in the creativity and productivity of the pharmaceutical industry. This is a complex issue with many contributing factors resulting from the numerous mergers, increase in out-sourcing, and the heavy dependency on highthroughput screening (HTS). While a simple solution to such a complex problem is unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the drug discovery process may provide some solutions to these problems. Specifically, as the binding affinity of a chemical lead is evolved during the iterative structure-based drug design process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect, metabolomics can be used to eliminate compounds with potential efficacy and side effect problems while prioritizing well-behaved leads with druglike characteristics.
NMR-based metabolomics: a holistic approach for monitoring complex biological systems
2019
Metabolomics is a novel approach with a huge potential to assess and reveal in a complex biological system altered metabolism produced in response to environmental stressors, diseases or exposure to toxicants. The high applicability of this approach is due to its ability to qualitatively and quantitatively characterize the chemical profile of all the low molecular weight metabolites (metabolome) present in cells, tissues, organs, and biological fluids as end products of the cellular regulatory pathways. Thus, providing a snapshot of the phenotype of a biological system, metabolomics offers useful contributions to a comprehensive insight into the functional status of human, animal, plant, and microbe organisms. One of the main analytical platforms employed in metabolomics is the Nuclear Magnetic Resonance (NMR) spectroscopy that, when linked with pattern recognition techniques and data mining tools, can provide an overview of the metabolic status of a complex biological system and co...