TMEM230 variants in Parkinson’s disease (original) (raw)
Related papers
Frontiers in aging neuroscience, 2018
Background: Parkinson's disease (PD) is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES) technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated. Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas. Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS), Combined Annotation Dependent Depletion (CADD) and Rare Exome Variant Ensemble Learner (REVEL) software. Functional evaluation was performed using the Pathway Studio database. Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7) were the most significant. Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.
Interpreting Genetic Variants: Hints from a Family Cluster of Parkinson’s Disease
Journal of Parkinson's Disease, 2018
Technological innovation related to the advent and development of the Next-Generation Sequencing (NGS) has provided significant advances in the diagnosis of disorders with genetic and phenotypic variability, such as neurodegenerative diseases. However, the interpretation of NGS data often remains challenging, although advanced prediction tools have contributed to primarily assess the impact of some missense variants. Here, we report a patient with Parkinson's disease (PD) and a family history of disease, in which a panel of 29 disease-causing or risk genes for PD were analyzed. We identified a new missense variant in the SNCA gene. Although this variant might be associated with PD in this family, it has been currently classified as a "Variant of Unknown Significance" because of the lack of segregation with disease. Indeed, we subsequently found the same mutation in an unaffected sister. Nevertheless, this finding may help clinicians and researchers in questioning the causative role of genetic variants within the daily clinical and diagnostic settings.
Frontiers in Neuroscience, 2022
Parkinsonism belongs to the most common neurodegenerative disease. Genetic predisposition could be one of the significant risk factor for disease development. It has been described higher prevalence of parkinsonism in large pedigree from southeastern Moravia region. The study aims were to select accessible subfamily trios from the pedigree suitable for segregation genetic analyses to perform whole exome sequencing (WES) in trio individuals and further to evaluate genetic variants in the each trio. We used IonTorrent platform for WES for five subfamily trios (1–5). Each trio included two affected and one healthy person (as control). Found variants were filtered with respect to MAF < 1% (minor allele frequency), variants effect (based on prediction tools) and disease filter (Parkinsonism responsible genes). Finally, the variants from each trio were assessed with respect to the presence in the patients. There were found no one founder mutation in the subfamilies from the pedigree. T...
Genetics of Parkinson's disease: the yield
Parkinsonism & Related Disorders, 2014
The discovery of genes implicated in familial forms of Parkinson's disease (PD) has provided new insights into the molecular events leading to neurodegeneration. Clinically, patients with genetically determined PD can be difficult to distinguish from those with sporadic PD. Monogenic causes include autosomal dominantly (SNCA, LRRK2, VPS35, EIF4G1) as well as recessively (PARK2, PINK1, DJ-1) inherited mutations. Additional recessive forms of parkinsonism present with atypical signs, including very early disease onset, dystonia, dementia and pyramidal signs. New techniques in the search for phenotype-associated genes (next-generation sequencing, genome-wide association studies) have expanded the spectrum of both monogenic PD and variants that alter risk to develop PD. Examples of risk genes include the two lysosomal enzyme coding genes GBA and SMPD1, which are associated with a 5-fold and 9-fold increased risk of PD, respectively. It is hoped that further knowledge of the genetic makeup of PD will allow designing treatments that alter the course of the disease.
Molecular neurobiology, 2017
In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patien...
Molecular Findings in Familial Parkinson Disease in Spain
Archives of Neurology, 2002
Background: Several genetic errors in ␣-synuclein (Park1) and ubiquitin carboxyl-terminal-hydrolase L1(Park5) genes cause autosomal dominant familial Parkinson disease. Mutations in the parkin gene (Park2) are the major cause of autosomal recessive Parkinson disease. Objective: To analyze the clinical and molecular data of 19 Spanish kindreds (13 with recessive, 4 with dominant, and 2 with uncertain inheritance) who have familial Parkinson disease. Methods: We searched for the previously described mutations in Park1 and Park5 genes and for new or described mutations in Park2. We used single-strand conformation polymorphism, direct sequencing, and restriction digestion of polymerase chain reaction (PCR)amplified genomic DNA for this study. Results: None of these families have either Park1 or Park5 mutations. We found 5 different mutations in Park2 gene in 5 of the families with recessive inheritance. To our knowledge, 2 of these mutations, V56E and C212Y, have not been previously reported. The other mutations found (deletion of exons 3 and 5 and 225delA) have been described in other ethnic groups. Heterozygous carriers of a single Park2 mutation either were asymptomatic or developed clinical symptoms in late adulthood or after brief exposure to haloperidol therapy. Conclusions: Mutations in Park2 gene account for 38% of the families with recessive parkinsonism in Spain. We found 2 cases of simple heterozygous Park2 mutation carriers that developed clinical symptoms, either in late adulthood or after brief exposure to parkinsonizing agents. Thus, hereditary Parkinson disease has more variable clinical phenotype and molecular defects than previously thought since heterozygous mutations could be a risk factor for parkinsonism.
Hunting for Familial Parkinson’s Disease Mutations in the Post Genome Era
Genes, 2021
Parkinson’s disease (PD) is typically sporadic; however, multi-incident families provide a powerful platform to discover novel genetic forms of disease. Their identification supports deciphering molecular processes leading to disease and may inform of new therapeutic targets. The LRRK2 p.G2019S mutation causes PD in 42.5–68% of carriers by the age of 80 years. We hypothesise similarly intermediately penetrant mutations may present in multi-incident families with a generally strong family history of disease. We have analysed six multiplex families for missense variants using whole exome sequencing to find 32 rare heterozygous mutations shared amongst affected members. Included in these mutations was the KCNJ15 p.R28C variant, identified in five affected members of the same family, two elderly unaffected members of the same family, and two unrelated PD cases. Additionally, the SIPA1L1 p.R236Q variant was identified in three related affected members and an unrelated familial case. Whil...
Human molecular genetics, 2016
Oligogenic inheritance implies a role for several genetic factors in disease etiology. We studied oligogenic inheritance in Parkinson's (PD) by assessing the potential burden of additional rare variants in established Mendelian genes and/or GBA, in individuals with and without a primary pathogenic genetic cause in two large independent cohorts totaling 7,900 PD cases and 6,166 controls. An excess (≥30%) of cases with a recognized primary genetic cause had ≥1 additional rare variants in Mendelian PD genes, as compared with no known mutation PD cases (17%) and unaffected controls (16%), supporting our hypothesis. Carriers of additional Mendelian gene variants have younger ages at onset (AAO). The effect of additional Mendelian variants in LRRK2 G2019S mutation carriers, of which ATP13A2 variation is particularly common, may account for some of the variation in penetrance. About 10% of no known mutation PD cases harbor a rare GBA variant compared to known pathogenic mutation PD cas...