Mutations in Nop60B, the Drosophila homolog of human Dyskeratosis congenita 1, affect the maintenance of the germ-line stem cell lineage during spermatogenesis (original) (raw)
Related papers
Genes & Genetic Systems, 2012
Odysseus (OdsH) has been identified as a hybrid male sterility gene between Drosophila mauritiana and D. simulans with accelerated evolutionary rate in both expression and DNA sequence. Loss of a testis-specific expression of OdsH causes male fertility defect in D. melanogaster. Yet, the underlying mechanisms at the cellular level are unknown. In an attempt to identify the possible mechanisms and functional roles of OdsH in spermatogenesis, the cell numbers at different developmental stages during spermatogenesis between the OdsH null mutant and wild-type flies were compared. The results showed that the early developing germ cells, including spermatogonia and spermatocytes, were reduced in the OdsH mutant males. In addition, the number of germline stem cells in aged males was also reduced, presumably due to the disruption of germline stem cell maintenance, which resulted in more severe fertility defect. These results suggest that the function of the enhancement of sperm production by OdsH acted across males of all ages.
Genes & Genetic Systems
Odysseus (OdsH) has been identified as a hybrid male sterility gene between Drosophila mauritiana and D. simulans with accelerated evolutionary rate in both expression and DNA sequence. Loss of a testis-specific expression of OdsH causes male fertility defect in D. melanogaster. Yet, the underlying mechanisms at the cellular level are unknown. In an attempt to identify the possible mechanisms and functional roles of OdsH in spermatogenesis, the cell numbers at different developmental stages during spermatogenesis between the OdsH null mutant and wild-type flies were compared. The results showed that the early developing germ cells, including spermatogonia and spermatocytes, were reduced in the OdsH mutant males. In addition, the number of germline stem cells in aged males was also reduced, presumably due to the disruption of germline stem cell maintenance, which resulted in more severe fertility defect. These results suggest that the function of the enhancement of sperm production b...
Current Biology, 2003
shape, while spermatogonia and spermatocytes contain UK spectrin-rich structures known as fusomes, which are linear and branched in appearance ( ). UASdpp/ϩ; nos-GAL4/ϩ (UAS-dpp) testes contained similar Summary numbers of spectrosome-containing cells to wild-type testes but many more fusome-containing cells, as The continuous and steady supply of transient cell types shown by immunostaining using antibodies to ␣-specsuch as skin, blood and gut depends crucially on the contrin ( ), suggesting that the ectopic cells resemtrolled proliferation of stem cells and their transit amble spermatogonia rather than GSCs or gonialblasts. plifying progeny. Although it is thought that signaling
Oncotarget, 2016
Azoospermia is a high risk factor for testicular germ cell tumors, whose underlying molecular mechanisms remain unknown. In a genome-wide association study to identify novel loci associated with human non-obstructive azoospermia (NOA), we uncovered a single nucleotide polymorphism (rs1887102, P=2.60 ×10-7) in a human gene FOXN3. FOXN3 is an evolutionarily conserved gene. We used Drosophila melanogaster as a model system to test whether CHES-1-like, the Drosophila FOXN3 ortholog, is required for male fertility. CHES-1-like knockout flies are viable and fertile, and show no defects in spermatogenesis. However, ectopic expression of CHES-1-like in germ cells significantly reduced male fertility. With CHES-1-like overexpression, spermatogonia fail to differentiate after four rounds of mitotic division, but continue to divide to form tumor like structures. In these testes, expression levels of differentiation factor, Bam, were reduced, but the expression region of Bam was expanded. Furth...
Cell Stem Cell, 2010
The mechanisms by which germline stem cells (GSCs) in the Drosophila testis undergo asymmetric division to regenerate a stem cell as well as a daughter (gonialblast) that will only undergo a further four mitotic divisions prior to entering premeiotic S phase and differentiating into a cyst of spermatocytes are not fully resolved. Here we demonstrate that the HOW RNA-binding protein is required for maintenance of CycB and therefore mitotic progression in GSCs and gonialblasts as well as determining the timing of the spermatogonial divisions. HOW is normally expressed in a complementary pattern to Bam in the germline and bam mRNA is bound by HOW in vivo. Ectopic expression of the HOW(L) isoform is associated with a delay in accumulation of Bam to the level required for differentiation, resulting in extra mitotic divisions. Spatiotemporal regulation of HOW expression is therefore required to specify the four spermatogonial transit-amplifying divisions. Cell Stem Cell HOW Represses Bam to Regulate Germ Cell Mitoses
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cock-ayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However , how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
A Drosophila toolkit for defining gene function in spermatogenesis
Reproduction, 2017
Expression profiling and genomic sequencing methods enable the accumulation of vast quantities of data that relate to the expression of genes during the maturation of male germ cells from primordial germ cells to spermatozoa and potential mutations that underlie male infertility. However, the determination of gene function in specific aspects of spermatogenesis or linking abnormal gene function with infertility remain rate limiting, as even in an era of CRISPR analysis of gene function in mammalian models, this still requires considerable resources and time. Comparative developmental biology studies have shown the remarkable conservation of spermatogenic developmental processes from insects to vertebrates and provide an avenue of rapid assessment of gene function to inform the potential roles of specific genes in rodent and human spermatogenesis. The vinegar fly,Drosophila melanogaster, has been used as a model organism for developmental genetic studies for over one hundred years, a...
dRTEL1 is essential for the maintenance of Drosophila male germline stem cells
PLOS Genetics, 2021
Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.