Assignment of the resting state of the secondary active transporter BetP by integrating spectroscopic measurements and molecular simulations (original) (raw)

Conformational changes of the betaine transporter BetP from Corynebacterium glutamicum studied by pulse EPR spectroscopy

The betaine transporter BetP from Corynebacterium glutamicum is activated by hyperosmotic stress critically depending on the presence and integrity of its sensory C-terminal domain. The conformational properties of the trimeric BetP reconstituted in liposomes in the inactive state and during osmotic activation were investigated by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Comparison of intra-and intermolecular inter spin distance distributions obtained by double electron-electron resonance (DEER) EPR with the crystal structure of BetP by means of a rotamer library analysis suggest a rotation of BetP protomers within the trimer by about 15°as compared to the X-ray structure. Furthermore, we observed conformational changes upon activation of BetP, which are reflected in changes of the distances between positions 545 and 589 of different protomers in the trimer. Introduction of proline at positions 550 and 572, both leading to BetP variants with a permanent (low level) transport activity, caused changes of the DEER data similar to those observed for the activated and inactivated state, respectively. This indicates that not only displacements of the C-terminal domain in general but also concomitant interactions of its primary structure with surrounding protein domains and/or lipids are crucial for the activity regulation of BetP.

Interpretation of spectroscopic data using molecular simulations for the secondary active transporter BetP

Journal of General Physiology, 2019

Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron–electron double resonance (PELDOR), also known as double electron–electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been develope...

Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site-directed spin labeling approach

Protein Science, 2009

Previously published 3-D structures of a prototypic ATP-binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid-body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site-directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide-binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin-labeled cysteine mutants suggests that, in the resting state, this sub-domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3-D structure of BmrA and that residues within these two sub-domains are essential for proper functioning of this transporter.

Spin Labeling Analysis of Structure and Dynamics of the Na + /Proline Transporter of Escherichia coli †

Biochemistry, 2000

With respect to the functional importance attributed to the N-terminal part of the Na + /proline transporter of Escherichia coli (PutP), we report here on the structural arrangement and functional dynamics of transmembrane domains (TMs) II and III and the adjoining loop regions. Information on membrane topography was obtained by analyzing the residual mobility of site-specifically-attached nitroxide spin label and by determination of collision frequencies of the nitroxide with oxygen and a polar metal ion complex using electron paramagnetic resonance (EPR) spectroscopy. The studies suggest that amino acids Phe45, Ser50, Ser54, Trp59, and Met62 are part of TM II while Gly39 and Arg40 are located at a membrane-water interface probably forming the cytoplasmic cap of the TM. Also Ala67 and Glu75 are at a membrane-water interface, suggesting a location close to the periplasmic ends of TMs II and III, respectively. Ser71 between these residues is clearly in a water-exposed loop (periplasmic loop 3). Spin labels attached to positions 80, 86, and 91 show EPR properties typical for a TM location (TM III). Leu97 may be part of a structured loop region while Ala107 is clearly located in a water-exposed loop (cytoplasmic loop 4). Finally, spin labels attached to the positions of Asp33 and Leu37 are clearly on the surface of the transporter and are directed into an apolar environment. These findings strongly support the recently proposed 13-helix model of PutP [Jung, H., Rübenhagen, R., Tebbe, S., Leifker, K., Tholema, N., Quick, M., and Schmid, R. (1998) J. Biol. Chem. 273, 26400-26407] and suggest that TMs II and III of the transporter are formed by amino acids Ser41 to Gly66 and Ser76 to Gly95, respectively. In addition to the topology analysis, it is shown that binding of Na + and/or proline to the transporter alters the mobility of the nitroxide group at the positions of Leu37 and Phe45. From these findings, it is concluded that binding of the ligands induces conformational alterations of PutP that involve at least parts of TM II and the preceding cytoplasmic loop. .

Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques

Context: Cationic amino acid transporters (CATs) facilitate arginine transport across membranes and maintain its levels in various tissues and organs, but their overexpression has been associated with severe cancers. A recent study identified the alternating access mechanism and critical residues involved in arginine transportation in a cationic amino acid transporter from Geobacillus kaustophilus (GkApcT). Here, we used molecular dynamics (MD) simulation methods to investigate the transportation mechanism of arginine (Arg) through GkApcT. The results revealed that arginine strongly interacts with specific binding site residues (Thr43, Asp111, Glu115, Lys191, Phe231, Ile234, and Asp237). Based on the umbrella sampling, the main driving force for arginine transport is the polar interactions of the arginine with channel-lining residues. An in-depth description of the dissociation mechanism and binding energy analysis brings valuable insight into the interactions between arginine and t...

Structural Asymmetry in a Trimeric Na+/Betaine Symporter, BetP, from Corynebacterium glutamicum

Journal of Molecular Biology, 2011

The Na + -coupled symporter BetP catalyzes the uptake of the compatible solute betaine in the soil bacterium Corynebacterium glutamicum. BetP also senses hyperosmotic stress and regulates its own activity in response to stress level. We determined a three-dimensional (3D) map (at 8 Å in-plane resolution) of a constitutively active mutant of BetP in a C. glutamicum membrane environment by electron cryomicroscopy of two-dimensional crystals. The map shows that the constitutively active mutant, which lacks the C-terminal domain involved in osmosensing, is trimeric like wild-type BetP. Recently, we reported the X-ray crystal structure of BetP at 3.35 Å, in which all three protomers displayed a substrate-occluded state. Rigid-body fitting of this trimeric structure to the 3D map identified the periplasmic and cytoplasmic sides of the membrane. Fitting of an X-ray monomer to the individual protomer maps allowed assignment of transmembrane helices and of the substrate pathway, and revealed differences in trimer architecture from the X-ray structure in the tilt angle of each protomer with respect to the membrane. The three protomer maps showed pronounced differences around the substrate pathway, suggesting three different conformations within the same trimer. Two of those protomer maps closely match those of the atomic structures of the outward-facing and inward-facing states of the hydantoin transporter Mhp1, suggesting that the BetP protomer conformations reflect key states of the transport cycle. Thus, the asymmetry in the two-dimensional maps may reflect cooperativity of conformational changes within the BetP trimer, which potentially increases the rate of glycine betaine uptake.

The role of lipids and salts in two-dimensional crystallization of the glycine–betaine transporter BetP from Corynebacterium glutamicum

Journal of Structural Biology, 2007

The osmoregulated and chill-sensitive glycine-betaine transporter (BetP) from Corynebacterium glutamicum was reconstituted into lipids to form two-dimensional (2D) crystals. The sensitivity of BetP partly bases on its interaction with lipids. Here we demonstrate that lipids and salts influence crystal morphology and crystallinity of a C-terminally truncated BetP. The salt type and concentration during crystallization determined whether crystals grew in the form of planar-tubes, sheets or vesicles, while the lipid type influenced crystal packing and order. Three different lipid preparations for 2D crystallization were compared. Only the use of lipids extracted from C. glutamicum cells led to the formation of large, well-ordered crystalline areas. To understand the lipid-derived influence on crystallinity, lipid extracts from different stages of the crystallization process were analyzed by quantitative multiple-precursor ion scanning mass spectroscopy (MS). Results show that BetP has a preference for fatty acid moieties 16:0-18:1, and that a phosphatidyl glycerol (PG) 16:0-18:1 rich preparation prevents formation of pseudo crystals.

Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics

Biochemical Society transactions, 2016

During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structu...

Structural perspectives on secondary active transporters

Trends in pharmacological sciences, 2010

Secondary active transporters catalyze concentrative transport of substrates across lipid membranes by harnessing the energy of electrochemical ion gradients. These transporters bind their ligands on one side of the membrane, and undergo a global conformational change to release them on the other side of the membrane. Over the last few years, crystal structures have captured several bacterial secondary transporters in different states along their transport cycle, providing insight into possible molecular mechanisms. In this review, we will summarize recent findings focusing on the emerging structural and mechanistic similarities between evolutionary diverse transporters. We will also discuss the structural basis of substrate binding, ion coupling and inhibition viewed from the perspective of these similarities.