A survey of constructive coding theory, and a table of binary codes of highest known rate (original) (raw)
Abstract
Although n-me than f wenty years have passed since the appearance of Shannon's iapers, a stilll unsolved problem o: coding theory is to construct block codes which attain a low probability of error at rates clax to capacity. However, for moderate block lengths many good codes are known!, the best-known being the BCH codes discovered in 1959. This paper is a survey of results in coding theory obtainedsisce the appearance of Berlekamp's'"Algebraic coding theory" (1968), concentrating on those which lead. to the construction of new codes. The paper concludes with ir table giving the smallest redundancy of any binary code, linear or nonlinear, that is presently known (to the author), for all lengths up to 5 12 and all minimum distances up to 30.
FAQs
AI
What are the key properties of cyclic and non-linear codes?add
The paper highlights that cyclic codes are simpler and generally yield better performance metrics compared to non-linear codes. For instance, cyclic codes like BCH show minimum distances that meet Gilbert bounds.
How did BCH codes improve error-correction capabilities?add
BCH codes achieve significant error-correction capability by utilizing prime powers, exhibiting minimum distances of at least 2t + 1. These codes are constructed to meet the Gilbert boundary for long code lengths.
What metrics are used to evaluate binary codes in this context?add
The evaluation of binary codes primarily considers parameters like redundancy, minimum distance, and the number of codewords. The redundancy is calculated as r = n - log_q(M), connecting code length and dimensions.
What does recent research suggest about self-dual linear codes?add
Recent findings indicate that self-dual linear binary codes with weights divisible by 4 meet the Gilbert bound, shedding light on optimal characteristics. For example, Thompson demonstrated their efficacy in specific coding scenarios.
When were the earliest findings on error-correcting codes established?add
The foundational work in error correction dates back to 1948 when Shannon predicted codes could achieve error probabilities close to channel capacity. Gilbert later established lower bounds on code performance metrics in the following decades.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (131)
- W? W? VW WI [Wl] [H21 [H31 [JII [:;ii [ &2] [ E3] iK51 IK41 fLl1 [L21 tL31 [Nil [Pll 1P23 [I31 iP41 fSU I:.R, BerIehamp, Algebraic coding theory (McGraw-I-Ii& New York, 1968) (see espe- cialIj/ pp. 360,432-433).
- L. C;dabi and E. Mytvaagnes, On the minimal weight of bingry group codes, PGIT 10 (1964) 385-387.
- J.r cordaro and T.J. Wagner, Optimum (n, 2) codes for smaII values of channel error prc dabihty, PGIT 13 (1967) 349-350.
- C.I.,, Chen, Computer results on the minimum distance of some binary cyclic codes, PGIT 16 (1970) 359-360. -4.
- B. Iontame and W.W. Peterson, Group code equivalence and optimum codes, PGIT .5 (1959) (Special Suap4.) 60-70.
- M.J.E, Goiay, Notes on digital coding, Proc. IRE, 37 (1949) 657.
- I!$.; .E. SoIay , Binary coding, PGIT 4 (1954) 23 -28.
- H.D. Goldman, M. K!iman and H. Smola, The weight structure of some Bose-Chaudhuri codes, PGIT 14 (1968) 167-169.
- V.D. Goppa, rl new cIass of linear error-correcting codes, Prob. Pereda& Inform. 6 (1970) 24-30 (in Russian), R.W. Hammi.ng, Error detecting and error correcting codes, BSTJ 29 (1950) 147-160.
- H.J. Helgert, Srivastava codes, PGIT 18 (1972) 292--297.
- H.J. Helgert, persona; communication.
- D. Juiin, Two improved block codes, PGIT 11 ( 1965) 4591.
- %I. I&a&i, :New binacf coding results by circulants, PGIT 15 (1969) 81-92.
- T. Kasami and N. Tokura, Some remarks on BCH bounds and minimum weights of bi- nary primitive BCH c%ldes, PGIT 15 (1969) 408-4 13.
- T. Kasami, S. Lin and W.W. Peterson, PolynomiaI codes, PGIT 14 (1968) 807-814.
- A.M. Kerdock, A class of low-rate nonlinear codes, IC 20 (1972) : 82-187.
- M. IGulin, personal conmmnication.
- A.E. Laemmel, Efficiency of noise reducing codes, in: W. Jackson, ed., Communica,tion theory (Butterworth, London, 1953) 111-l 18.
- V.I. Levenshtein, The application of Hadamard matrices Ito a problem in coding, Prob- lems of Cybernetics 5 (1964) 166-154.
- V. Lum and KX Chien, On the minimum distance of Bose-Chaudhuri-Hocquenghem r:odes, SIAM 3, Appl. Math. 16 (1968) 1325-1337.
- A.W. Nordstrom and J.P. Robinson, An optimum non1incz.r code, IC 11 (1967) 6 13-616.
- W-W. Peterso \, Error-correcting codes (M.I.T. Press, Cambridge, _ iass., 196 1) (see espe- cially pp. 71,166--167).
- V.S. Pless, Power moment identities on weight distributions in error correcting codes, IC 6 (Ii 963) 147-152.
- M. 1'i.o Ucin, Binary Lodes with specified minimum distance ;, PGIT 6 (1960) 445 -450.
- P.P. Preparata, A class of optimum nonlinear double-error correcting cc,des, IC 13 ( 1968) 378-400.
- N.J.A. fkr;ne ad D.S. Whitehead, A new fami!y of single-error correcting codes, PGIT 16 (1970) 717-719.
- ยง21 &JA. ~hane and J.J. Seidel, A nl:w family of nonlinear codes obtained from corifefencs - fS3] matrices, Ann. New York Acad, Sci. 175 (1970) 363-365. A new code.
- N.J.A. Shm, SM. Reddy and CL. Chen, New binary codes, PGlT 18 (197 2) 503 -5 10.
- N. Tokura, K. Taniguchi and T. Kasami, A search procedure for finding optimum group [Wll codes for the binary symmetric channel, PGET 13 (1967) 587-594.
- T.J. Wagner, A search technique for quasi-perfect codes, IiC 9 (1966,) 94-99.
- Further references cited in text D.R. Anderson, A new class Of cyclic code& SIAM J. Appl. Math. ] 6 (1968) 181-197 &Fe As~us Jr*, HZ. Mmon Jr. and R.J. Turyn, Research to develop the algebraic t3;eoi-y of codes (sci* ReP-AWN--67-0365, Air Force Cambridge Res. Lab., Bedford, Mass., 1967).
- F. Assmus Jr. and H.F. Mattson Jr., New S-designs, JCT 6 (lg6g) 122-15
- E.F* Amus Jr. and RF. I%ttson Jr., Some (3p, p) codes, in: Information processing 68 (North-Holland, Amaterdarn, 1%9) 205 -209.
- L.Dg Baumert and R.J. Mcf;?lecz, Weights of irreducible cychc codes, to appear.
- 'I'. Berger, Rate distortion theory (Prentice-Hall, Englewood Cliffs, NJ ., 197 1).
- MC Berlekamp, Weight ecumeration theorems, in: Proc. 6th Alerton Conf. on Circuit and Systems Theor& Urbana (univ. of Illinois Press, Chicago, 111. 1968) 161--170.
- E.R. Berlekamp, The weight emrmerators for certain subcodes of the secc.:,x! order binxy Reed-Mullet codes, IC 17 ( 1970) 485 -5O0, E.R. Berlekamp, Some niathematicat properties of a scheme for reducing the bandwidth of motion pictures by Hadamard smearing, BSTJ 49 (1970) 969-986.
- ER. Berlekump, A survey of coding theory for algebraists and combinatori tiists (Jnterrl. Uentre for Mech. Sci., Udine, Italy, 1970).
- E.R. Beriekamp, Coding theory and the Mathieu groups, IC 18 (197 3? ) 40-ri4.
- E.R. Berlekamp, Long primifive binary BCH codes have distance d w 2n In ,Q -'/log n -.., PGIT 18 (19?2) 415-426.
- E.R. Berlekamp and N.J.A. !;loane, Weight enumerator for second order Re:d-M&e; codes, PGIT 16 (1970) 745.-751.
- E.R. Berlekamp and L.R. Welch, Weight distributions of the cosets of the (?2,6) Reed- Muiler code, PGIT 18 (197:::) 203-Z,O7.
- E.R, Berlekmp, F-J. MacWiUiams and N.J.A. Sloan?, Gleason's theorem on self dual codes, 18 (1972) 409-414.
- S,li), Berman, On the theorbr of group codes, Cybernetics 3 (1967) 25-31.
- S.D. Berman, Semisimple cjrclic and abeban codes II, Cybernetics 3 (1967) 117-23.
- R,C. Bose! and D.8:. Ray-t&wdh~*ri, On a class of error Correcting binary g]rOUp codes, IC 3 (1960) 68-7!,, 279-290.
- H.0, Burton, A survey of ccrror correcting techniques for data 0'1 telephone facilities. in: Proc. Intern, Commun. Con&, San Francisco, Calif., 1970.
- p, Camion, Abelian codes, Math. Res. Center, Univ. Of WiScOnSh Rept. I():,9 (19'70).
- C,L. Cfgn, me existence of arbitrarily long pseudo-cyclic codes that meet the Slbert bound, in: Proc, 5th Ant). Princeton Coflf. inform* sci. (1971) 242.
- c,L, chell, w.w. Y@tersorl and E.J. Weldon Jr., Some results on quasicYclic codes, Jc 15 (1969) 407-423.
- J,H. Conwsr!l. fi. rtsilp of' order P,315,553.613,086,720,000, Bull. London IlIath. Sot. 1 (1969) 79--88.
- J.H, Conway, A characterization of Let -h's lattice, Invent. Math. 7 (1969) II 3 7-142.
- G. Dagnin<s, On a an :w t:la.rs of binary group codes, Cdc010 5 (1968) 277-2!$4. 1271 y, DeligLee, Aut,Drno@isms of abelian codes, PWps Res. Rept. 25 (1970) 389-4fl2.
- P. Deb&e, Majority logic decodable codes &xi 'lrovd from finite inversive planes, IC 18 (1971) 319-325.
- p, DeIsarte and J&I. Goethals, Irreducible binar), cyziic codes of even dimensic n, Univ. Nora Ca&jna at Chapel Hill, Inst. Statist., Mimeo Ser. NO. 600.27, 1970.
- R,L, Dobrushin, Survey of Soviet research in information theory, t0 appear. 1311 E.N. Gilbert, A comparison of signaling alphabets, BSTJ 31 (1952) 504-522.
- A.M. Gleason, Weight,polynomiaIs uf self-dual codes and the MacWilliams identities, in: proc. Intern, Congr. Mathematicians, Nice f 1970) 14~0-144.
- ~3~3
- J,M. Goethals, Factorization of cyclic codes, PGIT 13 (1967) '42-246.
- J.M. Goethals, On the Golay perfect binary code-ICI ll(l971) 178-186.
- J.M, Goethals, Some combinatorial aspects of coding theory, in: Proc. Combinat. Symp., Fort CoIlins, 1971, to appear.
- J.M. ;oethals and S.L. Snover, Nearly perfect binary codes, Discrete Math. 3 (1972) 65-$8 (this issue).
- Al.\, Green Two heuristic techniques for block-code construction (Abstract), PGIT 12 (1966) 273,
- C,R.P, Hartmann, On the minimum distance structure of cyclic codes and decoding be- yond the BCH boand, Ph. D. Thesis, Univ. of Illinois, 1970; also Coord. Sci. Lab. Rept. R-458, Univ, of Illinois, I970.
- C,R.P. Hartmann, A note on the minimum distance structure of cyclic codes, PGIT 5% (1972) 439-440.
- C,R,P. Hartmann, A generalization of the BCH bound, submitted to IC. {4:
- C,R,P. Hartmann, On the weight structure of cyclic codes of composite length, in: Proc. Fourth Hawaii Inter. Conf. System Sci., (1971) 117-119.
- C&P, Hartmann and K.K. Tzeng, A bound for cyclic codes of composite length, PGIT 18 (1972) 307.;
- C.R.P. Hartmann, K.K. Tzeng and R.T. Chien, Some results on the minimum distance structure of cyclic codes, PGIT 18 (1972) 402-469.
- T. Hatcher, On minimal distance, shortest length, and greatest number of elements for binary grou: ix&s (Parke %fathematical Labs,, Carlisle, Mass., Tech. Memo. 6, 1964).
- A. Hocquenghem, Codes correcteurs d'erreurs, Chir'fres, 2 (1959) 147-156.
- S.W, Moffner II and SM. Reddy, Circuiant bases for cyclic codes, PGIT 16 (1970) 51 l- 512.
- F. Jelinek, Free encoding of memorybss time-discrete sources with a fidelity criterion, PGIT 15 (1969) 584-590,
- SM. Johnson, On upper bounds for unrestricted binary error-correcting codes, PGIT 17 (1971) 466-478.
- M. Marlin, Decoding of circulant codes, PGIT 16 (1970) 797-802.
- M. t(arIin, Weight/moment relationships in ((2 + E) circulants, unpublished.
- T, Kasami. Some lower bounds on the minimum weight of cyclic cocies.of composite length, PGIT 14 (1968) 814-818.
- T. Icasami, An upper bound on k/n for affine-invariant codes with fixed d/n, PGIT 15 (1969) 174-176.
- T. Kasami, The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codles, IC 18 (1971) 369-394.
- T, Kasami, Son A~ ie>urts 011 &he weight structure of Reed-Muller codes, to appear. tssl Te Kasami, se Lin and W.W. Peterson, Some results on weight distributions of BCH codes, PGIT 12 (1966) 274,
- T. Kasami anfd N. T-*l-k#*.ura, On the weight structure of Reed-Muller codes, PGIT 16 (1970) 752-759.
- T, Kas;n,mi, N r c '14w~a and S . aA~~~mJ, On the weight di:$tribution of Reed-!tiuller codes, Inst. Electro0 Comrn v %g., Japan, PGIT Rept. (197 I) (in Japanese). (581 WI WI WI WI [631 L641 [651 (661 i671 [681 t691 c701 1711 1721 [731 1741 1751 1761 [771 1781 [791 vw P311 [@I V31 1841 W.H. Kamtz and K.N. Levitt, A sii~'~ PGIT 1S (1969) 197-244.
- V.N, Kohelev, Some properties of random group codes of la,rgi: length: P! ~bl. Pered;l~y Inform. 1 (1965) 45-48.
- MX KoZlov, The correcting capacities of linear codes, Soviet Physic: -Ooklady 14 (1969) 013-415, Jo Leech* Some sphere packin@ in higher space, Can. J. Math. 16 (1964) 6 57-682, Jm Leech, Notes on sphere packings, Can. J. Math. 19 (1967) 25 l--26 7. and N*JeAa Sloane, New sphere packings in dimensiqng g-15, ~ujll, Amer. M&~, Sot. 76 11970) 1006-1010, J. Leech ami N.J.A. Sloane, New sphere p askings in more than thirty-two dimensions, in: ProCe second aaPe1 Hill Conference on Comb, Math., Chapel ~i.11, N.C. (1970) 345--35:j, Ja Lath and N.JA Stoane, Sphere packing and error-correcting z&es, Can, J. Math 23 (1971) 718-745.
- WC. Leont'ev, A hypothesis on Bose-Chaudhuri codes, Probl. Peredaey InfOrm. 4 (1968) 66-70.
- S. Lin ad E.J. Weldon Jr., Long BCH codes are bad, IC 11 (1967) 445-451.
- CL Liu, B.G. Ong and G.R. Ruth. A construction scheme for linear and n,>nlinea,r codes, in: PIOC. S th Ann. Princeton Conf. Inform. Sci. (1971) 245 -247.
- R.W. Lucky, J. Salz and IX. Weldon Jr., Principles of data communication $cGraw Hill, New York, !968).
- F.J, MacWilliams, Error-correcting codes -An historical survey, in: H.B, Mann, ed., Error correcting codes (W&y, New York, 1968).
- F.J. MacWilliams, Zories and ideals in group algebras, in: RX. Bose and T.A. Dowliq, eds., Combinatorial ma..hematics and its applications (Univ. No rth Carolina Pres:b, Chapel Kill, 1969) Ch. 18.
- F.J. MacWliams, Binary codes which are ideals in the group algebra of an zbelian grolljp, BSTJ 49 (1970) 937-1011.
- F.J, MacWilliams, C.I.,. Mallows and N.J.A. Sloane, Generalizations of Glea!bon's theor1.m on weighl: enumerators of self-dual codes, PGIT 18 (197 2), to appe.=.
- F.J. Mac'WiIliams, N.J.A. Sloane and J.G. Thompson, On the existence of a projective plane of order 10, JCT, to appear.
- F,J. Mac~T~~~s, !V.J.A. Sloane and J.G. Thompson, Good self-dual codes exist, Discse:te Math, 3 (8972) 15.3-162 (this issue).
- A-S. Mar&ukov, Summation of the product of codes, Probl. Peredary Irli'orm. 4 (1968) 8-15.
- R.J. McEliece, On the symmetry of gcz-- rl qonlineac codes, PGIT 16 (1970'11609-6 11.
- R.J, McEliece ad i_i. Rumqr, Jr,, Euler prodncts, cycbtomy, and c:g.bding. in: Space programs ,wmmary (Jet Propulsion Lab., Calif. Inst. Techwol.) Vol. ? 7-65111 (1970) 22-27; and J. Number Theory 4 (1972) 302-311.
- D,E. Mu&q, -Application of boolean algebra to switching circuit de& :I and error dete'z tion, IRE Trans. Electronic Computers, EC3 (1954) 6-12.
- M, Nadler, A j&point n = 12, d = 5 cooe, PGlT 8 (1962) 58, S,Sh. Ogariesyan and V,G. Y@&yan, Weight spectra for Some &.sse' Of (:yl:lic error- correcting codes, probl. PeredaEi Inform. 6 (137@ z l-37 (in Russian;*
- E-T. Parker and P-J. MikOlai, A search for analOgU!s Of the h'ltithku glflup!'v b'lath. Car :p* 12 (1958138-43.
- A.M. Pat& Maximal codes with svcifieci minimum distance, IBM Tech. 2 ep1. T1.i 44.Q085 (1969).
- M. Patel, Maximal group codes with specified minimum distance, IBkl J. Ales. !)evel. 14 (1970) 43Ll-443.
- w,P(, Pehlt:H Jr., Analysis of a burst-trapping error correction procedure, BSTJ 49 (1!$70) 493-519.
- ! W.W. Petermn, On the weight structure and symmetry of BCH codes, Air Force Cam- b&f@ Res,, Lab., Bedford, Mass., Rept. AFCRL-65-515, 1965.
- V.S, Pless, On the uniqueness of the Colay codes, JCT 5 (1968) 215-228.
- V.S. Pless, \I)n a new family of symmetry codes and related new five-designs, Bull. Am. Math. SOC. 75 (1969) 1339-1342.
- V.S. Plless, Symmetry coides over GF(3) and new five-designs, JCT 12 (1972) 119-142.
- V.S. Plless,'A classidicstion of self-orthogonal codes over GF(2), Discrete Math. 3 (1972) 209-246 (this issue).
- F.P. Preparata, A new look at the Golay (23, 12) code, PGIT 16 (1970) 5lO--511.
- p -0~. Second Intern. Symp. Inform. theory, Tsahkadsor, Armenia, September 197 I. [ 931 I .s. Reed, A class of multiple-erro 7-correcting codes and the decoding scheme, PGIT 4 \ 1954) 38-49.
- D.V. Sarwate and E.R. Berlekamp, On the weight enumeration of Reed-Muller codes and their cosets, to appear.
- J.E. Savage, The complexity of decoders, II, Computati4:nal work and decoding time, PGIT 17 (1931) 77-85.
- N.V. Semak.ov and V.A. Zinov'ev, Balanced codes and tactical configurations, Probl. PeredaEi Infform. 5 (1969) 28-36. (in Russian).
- N,V. Semakov, V.A. Zinov'ev and G.V. Zaicev, Uniformly packed codes, Probl. Peredazi Inform, 7 (1971) 38-50 (in Russian),
- C.E. Shannon, A mathematical theory of commutication, BSTJ 27 (1948) 3 79-423, 623. -656.
- S.G.S. Shiva, Certain group codes, Prcc. IEEE 55 (1967) 2162-2163, [ 1001 V,M. Siciei'rJkDv, Weight spectra of binary Bose-Chaudhusi-Hocquenghem codes, Probl. Peredai!i Inform. 7 (1971) 14-22 (in Russian).
- R. Singleton, ?&ximum distance Q-nary codes, PGIT 10 (1964) 116 --118.
- N.&A. Sloane, .A survey of recent results in constructive coding theorq', in: National Tele- metering Conf. NTC'71 Record (IEEE, New York, 1971) 218-227.
- N.J.R. Slozr~~ anti R.J. Dick, On the enumeration of cosets of first order Reed-Muller codes, IEEE Intern. Conf. Communications (Montreal, 1971) 7 (197 1) 36-12 to 36-6.
- R. Stanton, The Mathieu groups, Can, J, Math. 3 (195 1) 164-174.
- J.J. Stiffler, Theory of synchronous communications (Prentice-Hall, Englewood Cliffs, N.J., 1971).
- M. Sugino: Y. Ienaga, N. Tokura and T. Kasami, Weight distribution of (12&, 64) Reed- Muller code, PGPT 117 (1971) 627-628.
- A. Tiet&v&nen, On the nonexistence of perfect codes over finite fields, SIAM J, to appear.
- A. Tietivtin,:n and A. Perko, There are no unknown perfect binary codes, Ann, Univ. Turku, Ser. '91 148 (1971) 3-10.
- S.Y. Tong, lrlurst-traipping techtiques for a compound channci, PGIT 15 (1969) 710-715.
- S.Y. Tong, Performance of burst-trapping codes, BSTJ 49 (1970) 477-491.
- J J.H. van Lint, Coding theory, Lecture Notes in Math. 201 (Springer, Berlin, lS71 j. { ;
- J.H. YB.D Lin't, A survey of recent work on perfect codes, Rocky Mountain J,, Math., to appear. [ 1131 J.H. van Lint, A ~!ew description of the NadUcr code, PGIT to appear. ! 1141 EU2L van 'Tllbiorg, Weights in the third-order Reed-Muller codes, Jet Propulsion Lab., mf. Inst. Technol., Tech. Rept. 32-1526, IV, 1971 .
- E.J. 'lGf* . -!don, Jr., Long quasi-cycl.ic codes are good (abstract) PGIT 16 (1970) 130.
- E. witt, &r Steinersche Systeme, Abh. Math. Sem. ilniv. Hamburg 12 (1938) 265-275. [ 1171 JX. lvdf, ddd+g two information symbols to certain nonthuy .BCH codes and some applications. BSTJ 48 (1969) 2403-2424.
- JX. wolf, Nonbinary railCorn error-correcting codes, PGI'I' 16 (1970) 236-23'?.