The Sphere-Packing Problem (original) (raw)

Abstract

A brief report on recent work on the sphere-packing problem.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (41)

  1. C. Bachoc, Applications of coding theory to the construction of modular lat- tices, J. Combin. Theory A 78 (1997), 92-119.
  2. C. Bachoc and G. Nebe, Extremal lattices of minimum 8 related to the Mathieu group M 22 , J. reine angew. Math. 494 (1998), 155-171.
  3. A. Bezdek and W. Kuperberg, Packing Euclidean space with congruent cylin- ders and with congruent ellipsoids, in Victor Klee Festschrift, ed. P. Gritz- mann et al., Amer. Math. Soc., 1991, pp. 71-80.
  4. J. Bierbrauer and Y. Edel, Dense sphere packings from new codes, preprint, 1998.
  5. A. Bonnecaze, A. R. Calderbank and P. Solé, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 41 (1995), 366- 377.
  6. J. H. Conway and N. J. A. Sloane, Laminated lattices, Ann. Math. 116 (1982), 593-620.
  7. J. H. Conway and N. J. A. Sloane, Low-dimensional lattices: Proc. Royal Soc. Ser. A. I: 418 (1988), 17-41; II: 419 (1988), 29-68; III: 418 (1988), 43-80; IV: 419 (1988), 259-286; V: 426 (1989), 211-232; VI: 436 (1991), 55-68; VII: 453 (1997), 2369-2389; VIII (in preparation).
  8. J. H. Conway and N. J. A. Sloane, A new upper bound for the minimum of an integral lattice of determinant one, Bull. Am. Math. Soc. 23 (1990), 383-387; 24 (1991), 479.
  9. J. H. Conway and N. J. A. Sloane, A new upper bound for the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 1319-1333.
  10. J. H. Conway and N. J. A. Sloane, The cell structures of certain lattices, in Miscellanea mathematica, ed. P. Hilton et al., Springer-Verlag, NY, 1991, pp. 71-107.
  11. J. H. Conway and N. J. A. Sloane, On lattices equivalent to their duals, J. Number Theory 48 (1994), 373-382.
  12. J. H. Conway and N. J. A. Sloane, Quaternary constructions for the binary single-error-correcting codes of Julin, Best and others, Designs, Codes, Crypt. 4 (1994), 31-42.
  13. J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discrete Comput. Geom. 13 (1995), 383-403.
  14. J. H. Conway and N. J. A. Sloane, The antipode construction for sphere packings, Invent. math. 123 (1996), 309-313.
  15. J. H. Conway and N. J. A. Sloane, A note on unimodular lattices, J. Number Theory (to appear).
  16. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, NY, 3rd edition, 1998.
  17. Y. Edel, E. M. Rains and N. J. A. Sloane, On kissing numbers in dimensions 32 to 128, Electron. J. Combin. 5 (1) (1998), paper R22.
  18. N. D. Elkies, personal communication.
  19. N. D. Elkies, Mordell-Weil lattices in characteristic 2: I. Construction and first properties, Internat. Math. Res. Notices (No. 8, 1994), 353-361.
  20. T. C. Hales, Sphere packings, Discrete Comput. Geom. I: 17 (1997), 1-51; II: 18 (1997), 135-149; III: preprint.
  21. W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler's con- jecture, Internat. J. Math. 93 (1993), 739-831; but see the review by G. Fejes Tóth, Math. Review 95g #52032, 1995.
  22. D.-O. Jaquet-Chiffelle, Enumération complète des classes de formes parfaites en dimension 7, Ann. Inst. Fourier 43 (1993), 21-55.
  23. F. R. Kschischang and S. Pasupathy, Some ternary and quaternary codes and associated sphere packings, IEEE Trans. Inform. Theory 38 (1992) 227-246.
  24. J. Leech and N. J. A. Sloane, Sphere packing and error-correcting codes, Canad. J. Math. 23 (1971), 718-745.
  25. S. Litsyn and A. Vardy, The uniqueness of the Best code, IEEE Trans. Inform. Theory 40 (1994), 1693-1698.
  26. C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg. 36 (1975), 68-76.
  27. J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996.
  28. D. J. Muder, A new bound on the local density of sphere packings, Discrete Comput. Geom. 10 (1993), 351-375.
  29. G. Nebe, Finite subgroups of GL n (Q) for 25 ≤ n ≤ 31, Comm. Alg. 24 (1996), 2341-2397.
  30. G. Nebe, Some cyclo-quaternionic lattices, J. Alg. 199 (1998), 472-498.
  31. G. Nebe and N. J. A. Sloane, A Catalogue of Lattices, published electronically at http://www.research.att.com/∼njas/lattices/.
  32. W. Plesken, Finite rational matrix groups -a survey, in Proc. Conf. "The ATLAS: Ten Years After", to appear.
  33. H.-G. Quebbemann, Lattices with theta-functions for G( √ 2) and linear codes, J. Alg. 105 (1987), 443-450.
  34. H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (1995), 190-202.
  35. H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices, L'Enseign. Math. 43 (1997), 55-65.
  36. E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimod- ular lattices, J. Number Theory, to appear.
  37. C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423 and 623-656.
  38. T. Shioda, Mordell-Weil lattices and sphere packings, Am. J. Math. 113 (1991), 931-948.
  39. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/∼njas/sequences/.
  40. A. Vardy, A new sphere packing in 20 dimensions, Invent. math. 121 (1995), 119-133.
  41. N. J. A. Sloane AT&T Labs-Research 180 Park Avenue Florham Park NJ 07932-0971 USA njas@research.att.com