The Sphere-Packing Problem (original) (raw)
Abstract
A brief report on recent work on the sphere-packing problem.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (41)
- C. Bachoc, Applications of coding theory to the construction of modular lat- tices, J. Combin. Theory A 78 (1997), 92-119.
- C. Bachoc and G. Nebe, Extremal lattices of minimum 8 related to the Mathieu group M 22 , J. reine angew. Math. 494 (1998), 155-171.
- A. Bezdek and W. Kuperberg, Packing Euclidean space with congruent cylin- ders and with congruent ellipsoids, in Victor Klee Festschrift, ed. P. Gritz- mann et al., Amer. Math. Soc., 1991, pp. 71-80.
- J. Bierbrauer and Y. Edel, Dense sphere packings from new codes, preprint, 1998.
- A. Bonnecaze, A. R. Calderbank and P. Solé, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 41 (1995), 366- 377.
- J. H. Conway and N. J. A. Sloane, Laminated lattices, Ann. Math. 116 (1982), 593-620.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices: Proc. Royal Soc. Ser. A. I: 418 (1988), 17-41; II: 419 (1988), 29-68; III: 418 (1988), 43-80; IV: 419 (1988), 259-286; V: 426 (1989), 211-232; VI: 436 (1991), 55-68; VII: 453 (1997), 2369-2389; VIII (in preparation).
- J. H. Conway and N. J. A. Sloane, A new upper bound for the minimum of an integral lattice of determinant one, Bull. Am. Math. Soc. 23 (1990), 383-387; 24 (1991), 479.
- J. H. Conway and N. J. A. Sloane, A new upper bound for the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 1319-1333.
- J. H. Conway and N. J. A. Sloane, The cell structures of certain lattices, in Miscellanea mathematica, ed. P. Hilton et al., Springer-Verlag, NY, 1991, pp. 71-107.
- J. H. Conway and N. J. A. Sloane, On lattices equivalent to their duals, J. Number Theory 48 (1994), 373-382.
- J. H. Conway and N. J. A. Sloane, Quaternary constructions for the binary single-error-correcting codes of Julin, Best and others, Designs, Codes, Crypt. 4 (1994), 31-42.
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discrete Comput. Geom. 13 (1995), 383-403.
- J. H. Conway and N. J. A. Sloane, The antipode construction for sphere packings, Invent. math. 123 (1996), 309-313.
- J. H. Conway and N. J. A. Sloane, A note on unimodular lattices, J. Number Theory (to appear).
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, NY, 3rd edition, 1998.
- Y. Edel, E. M. Rains and N. J. A. Sloane, On kissing numbers in dimensions 32 to 128, Electron. J. Combin. 5 (1) (1998), paper R22.
- N. D. Elkies, personal communication.
- N. D. Elkies, Mordell-Weil lattices in characteristic 2: I. Construction and first properties, Internat. Math. Res. Notices (No. 8, 1994), 353-361.
- T. C. Hales, Sphere packings, Discrete Comput. Geom. I: 17 (1997), 1-51; II: 18 (1997), 135-149; III: preprint.
- W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler's con- jecture, Internat. J. Math. 93 (1993), 739-831; but see the review by G. Fejes Tóth, Math. Review 95g #52032, 1995.
- D.-O. Jaquet-Chiffelle, Enumération complète des classes de formes parfaites en dimension 7, Ann. Inst. Fourier 43 (1993), 21-55.
- F. R. Kschischang and S. Pasupathy, Some ternary and quaternary codes and associated sphere packings, IEEE Trans. Inform. Theory 38 (1992) 227-246.
- J. Leech and N. J. A. Sloane, Sphere packing and error-correcting codes, Canad. J. Math. 23 (1971), 718-745.
- S. Litsyn and A. Vardy, The uniqueness of the Best code, IEEE Trans. Inform. Theory 40 (1994), 1693-1698.
- C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg. 36 (1975), 68-76.
- J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996.
- D. J. Muder, A new bound on the local density of sphere packings, Discrete Comput. Geom. 10 (1993), 351-375.
- G. Nebe, Finite subgroups of GL n (Q) for 25 ≤ n ≤ 31, Comm. Alg. 24 (1996), 2341-2397.
- G. Nebe, Some cyclo-quaternionic lattices, J. Alg. 199 (1998), 472-498.
- G. Nebe and N. J. A. Sloane, A Catalogue of Lattices, published electronically at http://www.research.att.com/∼njas/lattices/.
- W. Plesken, Finite rational matrix groups -a survey, in Proc. Conf. "The ATLAS: Ten Years After", to appear.
- H.-G. Quebbemann, Lattices with theta-functions for G( √ 2) and linear codes, J. Alg. 105 (1987), 443-450.
- H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (1995), 190-202.
- H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices, L'Enseign. Math. 43 (1997), 55-65.
- E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimod- ular lattices, J. Number Theory, to appear.
- C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423 and 623-656.
- T. Shioda, Mordell-Weil lattices and sphere packings, Am. J. Math. 113 (1991), 931-948.
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/∼njas/sequences/.
- A. Vardy, A new sphere packing in 20 dimensions, Invent. math. 121 (1995), 119-133.
- N. J. A. Sloane AT&T Labs-Research 180 Park Avenue Florham Park NJ 07932-0971 USA njas@research.att.com