Ultrasonic synthesis of high fluorescent C-dots and modified with CuWO4 nanocomposite for effective photocatalytic activity (original) (raw)
Journal of Molecular Structure, 2015
Abstract
ABSTRACT High fluorescent C-dots were synthesized from dextrose via facile ultrasonic wave assisted reaction. Carbon dots (C-dots)/Copper tungstate (CuWO4) heterostructure has been prepared via a facile reflux approach. The novel C-dots/CuWO4 photocatalyst were characterized by using transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV–vis, photoluminescence and X-ray photoelectron spectroscopy. The photocatalytic property of heterostructure nanocomposite has also been investigated by using rhodamine B as a model organic pollutant. The obtained results revealed that as prepared C-dots are predominately multilayer graphene oxide with luminance properties. After incorporation of C-dots onto the CuWO4, it contributes to the improvement of charge separation and reduction of charge recombination and thereby enhancing the photocatalytic property, respectively. The C-dots in the nanocomposites can efficiently trap electrons, thus hindering the recombination of photogenerated electrons and holes. The heterostructure nanocomposite with 5.0 wt% C-dots shows the highest photocatalytic activity, which is about three times as that of pure CuWO4.
Puthalapattu ReddyPrasad hasn't uploaded this paper.
Let Puthalapattu know you want this paper to be uploaded.
Ask for this paper to be uploaded.