Energetic modeling and single-molecule verification of dynamic regulation on receptor protein diffusion by actin corrals and lipid raft domains receptor (original) (raw)
Related papers
The Journal of chemical physics, 2014
We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.
Modeling Receptor Motility along Advecting Lipid Membranes
Membranes
This work aims to overview multiphysics mechanobiological computational models for receptor dynamics along advecting cell membranes. Continuum and statistical models of receptor motility are the two main modeling methodologies identified in reviewing the state of the art. Within the former modeling class, a further subdivision based on different biological purposes and processes of proteins’ motion is recognized; cell adhesion, cell contractility, endocytosis, and receptor relocations on advecting membranes are the most relevant biological processes identified in which receptor motility is pivotal. Numerical and/or experimental methods and approaches are highlighted in the exposure of the reviewed works provided by the literature, pertinent to the topic of the present manuscript. With a main focus on the continuum models of receptor motility, we discuss appropriate multiphyisics laws to model the mass flux of receptor proteins in the reproduction of receptor relocation and recruitme...
Biophysical Chemistry, 2006
Bimolecular reactions in the plasma membrane, such as receptor dimerization, are a key signaling step for many signaling systems. For receptors to dimerize, they must first diffuse until a collision happens, upon which a dimerization reaction may occur. Therefore, study of the dynamics of cell signaling on the membrane may require the use of a spatial modeling framework. Despite the availability of spatial simulation methods, e.g., stochastic spatial Monte Carlo (MC) simulation and partial differential equation (PDE) based approaches, many biological models invoke well-mixed assumptions without completely evaluating the importance of spatial organization. Whether one is to utilize a spatial or nonspatial simulation framework is therefore an important decision. In order to evaluate the importance of spatial effects a priori, i.e., without performing simulations, we have assessed the applicability of a dimensionless number, known as second Damköhler number (Da), defined here as the ratio of time scales of collision and reaction, for 2-dimensional bimolecular reactions. Our study shows that dimerization reactions in the plasma membrane with Da ∼N 0.1 (tested in the receptor density range of 10 2 -10 5 /μm 2 ) require spatial modeling. We also evaluated the effective reaction rate constants of MC and simple deterministic PDEs. Our simulations show that the effective reaction rate constant decreases with time due to time dependent changes in the spatial distribution of receptors. As a result, the effective reaction rate constant of simple PDEs can differ from that of MC by up to two orders of magnitude. Furthermore, we show that the fluctuations in the number of copies of signaling proteins (noise) may also depend on the diffusion properties of the system. Finally, we used the spatial MC model to explore the effect of plasma membrane heterogeneities, such as receptor localization and reduced diffusivity, on the dimerization rate. Interestingly, our simulations show that localization of epidermal growth factor receptor (EGFR) can cause the diffusion limited dimerization rate to be up to two orders of magnitude higher at higher average receptor densities reported for cancer cells, as compared to a normal cell.
Faraday Discussions, 2014
Interactions between lipids and membrane proteins play a key role in determining the nanoscale dynamic and structural properties of biological membranes. Molecular dynamics (MD) simulations provide a valuable tool for studying membrane models, complementing experimental approaches. It is now possible to simulate large membrane systems, such as simplified models of 15 bacterial and viral envelope membranes. Consequently, there is a pressing need to develop tools to visualize and quantify the dynamics of these immense systems, which typically are comprised of millions of particles. To tackle this issue, we have developed visual and quantitative analyses of molecular positions and their velocity field using path line, vector field and streamline techniques. This allows us to highlight large, transient flow-like movements of lipids and to better understand crowding within the lipid bilayer. The current study focuses on visualization and analysis of lipid dynamics. However, the methods are flexible and can be readily applied to e.g. proteins and nanoparticles within large complex membranes. The protocols developed here are readily accessible 25 both as a plugin for the molecular visualization program VMD and as a module for the MDAnalysis library. 40 current.
BMC Bioinformatics, 2010
Background: An adaptive coarse-grained (kinetic) Monte Carlo (ACGMC) simulation framework is applied to reaction and diffusion dynamics in inhomogeneous domains. The presented model is relevant to the diffusion and dimerization dynamics of epidermal growth factor receptor (EGFR) in the presence of plasma membrane heterogeneity and specifically receptor clustering. We perform simulations representing EGFR cluster dissipation in heterogeneous plasma membranes consisting of higher density clusters of receptors surrounded by low population areas using the ACGMC method. We further investigate the effect of key parameters on the cluster lifetime.
Biochemical Society Transactions, 2003
The monitoring of the movements of membrane proteins (or lipids) by single-particle tracking enables one to obtain reliable insights into the complex dynamic organization of the plasma membrane constituents. Using this technique, we investigated the diffusional behaviour of a G-protein-coupled receptor. The trajectories of the receptors revealed a diffusion mode combining a short-term rapid confined diffusion with a long-term slow diffusion. A detailed statistical analysis shows that the receptors have a diffusion confined to a domain which itself diffuses, the confinement being due to long-range attractive inter-protein interactions. The existing models of the dynamic organization of the cell membrane cannot explain our results. We propose a theoretical Brownian model of interacting proteins that is consistent with the experimental observations and accounts for the variations found as a function of the domain size of the short-term and long-term diffusion coefficients.
Monte Carlo simulations of receptor dynamics: Insights into cell signaling
The Histochemical Journal, 2004
Many receptor-level processes involve the diffusion and reaction of receptors with other membrane-localized molecules. Monte Carlo simulation is a powerful technique that allows us to track the motions and discrete reactions of individual receptors, thus simulating receptor dynamics and the early events of signal transduction. In this paper, we discuss simulations of two receptor processes, receptor dimerization and G-protein activation. Our first set of simulations demonstrates how receptor dimerization can create clusters of receptors via partner switching and the relevance of this clustering for receptor cross-talk and integrin signaling. Our second set of simulations investigates the activation and desensitization of G-protein coupled receptors when either a single agonist or both an agonist and an antagonist are present. For G-protein coupled receptor systems in the presence of an agonist alone, the dissociation rate constant of agonist is predicted to affect the ratio of G-protein activation to receptor phosphorylation. Similarly, this ratio is affected by the antagonist dissociation rate constant when both agonist and antagonist are present. The relationship of simulation predictions to experimental findings and potential applications of our findings are also discussed.
Biophysical Journal, 2008
As charged macromolecules adsorb and diffuse on cell membranes in a large variety of cell signaling processes, they can attract or repel oppositely charged lipids. This results in lateral membrane rearrangement and affects the dynamics of protein function. To address such processes quantitatively we introduce a dynamic mean-field scheme that allows selfconsistent calculations of the equilibrium state of membrane-protein complexes after such lateral reorganization of the membrane components, and serves to probe kinetic details of the process. Applicable to membranes with heterogeneous compositions containing several types of lipids, this comprehensive method accounts for mobile salt ions and charged macromolecules in three dimensions, as well as for lateral demixing of charged and net-neutral lipids in the membrane plane. In our model, the mobility of membrane components is governed by the diffusion-like Cahn-Hilliard equation, while the local electrochemical potential is based on nonlinear Poisson-Boltzmann theory. We illustrate the method by applying it to the adsorption of the anionic polypeptide poly-Lysine on negatively charged lipid membranes composed of binary mixtures of neutral and monovalent lipids, or onto ternary mixtures of neutral, monovalent, and multivalent lipids. Consistent with previous calculations and experiments, our results show that at steady-state multivalent lipids (such as PIP 2 ), but not monovalent lipid (such as phosphatidylserine), will segregate near the adsorbing macromolecules. To address the corresponding diffusion of the adsorbing protein in the membrane plane, we couple lipid mobility with the propagation of the adsorbing protein through a dynamic Monte Carlo scheme. We find that due to their higher mobility dictated by the electrochemical potential, multivalent lipids such as PIP 2 more quickly segregate near oppositely charged proteins than do monovalent lipids, even though their diffusion constants may be similar. The segregation, in turn, slows protein diffusion, as lipids introduce an effective drag on the motion of the adsorbate. In contrast, monovalent lipids such as phosphatidylserine only weakly segregate, and the diffusions of protein and lipid remain largely uncorrelated.
Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes
The Journal of Membrane Biology, 2016
To quantitatively examine the effect of membrane organization on lateral diffusion, we studied fluorescent carbocyanine lipid analogues and EGFP-tagged, single-pass transmembrane proteins in systems of decreasing complexity: (i) the plasma membrane (PM) of living cells, (ii) paraformaldehyde/dithiothreitol-induced giant plasma membrane vesicles (GPMVs), and (iii) giant unilamellar vesicles (GUVs) under physiological buffer conditions. A truncated, signaling-deficient interleukin-4 receptor subunit, showing efficient accumulation in the plasma membrane, served as a model transmembrane protein. Two-dimensional diffusion coefficients (D) were determined by fluorescence correlation spectroscopy (FCS) either at fixed positions (single-point, spFCS) or while scanning a circular orbit (circular scanning, csFCS). Consistent with a different inclusion sizes in the membrane, lipids diffuse slightly faster than the single-spanning membrane proteins in both membrane systems, GUVs and GPMVs. In GPMVs lipids and proteins consistently experienced a fivefold larger viscosity than in GUVs, reflecting the significant fraction of plasma membranederived proteins partitioning into GPMVs. Lipid and protein diffusion in the PM was, respectively, 2 times and 4-5 times slower in comparison to GPMVs. This discrepancy was quantitatively confirmed by csFCS. The similarity of diffusion of receptors and lipids in GPMVs and GUVs and its significant difference in the plasma membrane suggest that protein domains as small as EGFP convey sensitivity to the actin cortex on various length scales. Keywords Diffusion coefficient Á Fluorescent lipid Á Interleukin-4 receptor Á Giant plasma membrane vesicles Á Giant unilamellar vesicles Á Fluorescence correlation spectroscopy Abbreviations TM Transmembrane FCS Fluorescence correlation spectroscopy spFCS Single-point FCS csFCS Circular scanning FCS IL-4 Interleukin-4 IL-4Ra Alpha chain of Interleukin-4 receptor GUV Giant unilamellar vesicle
Diffusional dynamics of ligand-receptor association
The Journal of Physical Chemistry, 1986
Biological molecules generally have complicated shapes and charge distributions. Their binding sites for ligands or substrates are often geometrically restrictive and may display fluctuating steric and electrostatic properties. Detailed studies of biomolecular associations that involve such complications can be carried out with the aid of new Brownian dynamics simulation methods. These methods should also prove useful in studies of diffusion-influenced processq in other areas of chemistry. This article provides a simple and pedagogic treatment of diffusional bimolecular association and describes some of the initial applications of Brownian dynamics to biochemical systems.