The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference (original) (raw)

The R Package Mitlsem: Mixture of Student-T Distributions Using Importance Sampling Weighted Expectation Maximization for Efficient and Robust Simulation

Herman van Dijk

Social Science Research Network, 2012

View PDFchevron_right

A New Monte Carlo Method for Estimating Marginal Likelihoods

Lynn Kuo

Bayesian Analysis, 2017

View PDFchevron_right

Bayesian analysis of the Logit model and comparison of two Metropolis–Hastings strategies

Anas Altaleb

Computational Statistics & Data Analysis - CS&DA, 2002

View PDFchevron_right

A simulation approach to nonparametric empirical bayes analysis

Dimitris Karlis

International statistical review, 2001

View PDFchevron_right

Bayesian Essentials with R, 2nd edn. J.-M. Marin and C. P. Robert (2014). New York: Springer/Springer Texts in Statistics. 296 pages, ISBN: 978-1-4614-8686-2

Ana Corberán-vallet

Biometrical Journal, 2015

View PDFchevron_right

Bayesian Analysis of the Heterogeneity Model

Regina Tüchler, Sylvia Frühwirth-Schnatter

Journal of Business & Economic Statistics, 2004

View PDFchevron_right

A versatile MCMC strategy for sampling posterior distributions of analytically intractable models

Stefan Stoica

2007

View PDFchevron_right

Inflated density ratio and its variation and generalization for computing marginal likelihoods

Lynn Kuo

Journal of the Korean Statistical Society, 2020

View PDFchevron_right

On Bayesian model and variable selection using MCMC

Ioannis Ntzoufras

2002

View PDFchevron_right

A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood

Herman Van Dijk

Computational Statistics & Data Analysis, 2012

View PDFchevron_right

Bayesian model choice based on Monte Carlo estimates of posterior model probabilities

Peter Congdon

Computational Statistics & Data Analysis, 2006

View PDFchevron_right

Monte Carlo analysis of skew posterior distributions: an econometric example

Herman van Dijk

Royal Statistical Society Journal Series D the Statistician, 1983

View PDFchevron_right

Editor’s introduction to recent advances in Bayesian econometrics

Herman van Dijk

View PDFchevron_right

An Algorithm for the Computation of Posterior Moments and Densities Using Simple Importance Sampling

Herman van Dijk

The Statistician, 1987

View PDFchevron_right

Bayesian Statistics from Methods to Models and Applications

Alexandra Posekany

Springer Proceedings in Mathematics & Statistics, 2015

View PDFchevron_right

Recent advances in Bayesian econometrics

Herman Van Dijk, Luc C A Bauwens

Journal of Econometrics, 2004

View PDFchevron_right

Simulation Based Bayesian Econometric Inference: Principles and Some Recent Computational Advances

Rutger Van Oest, Herman Van Dijk

SSRN Electronic Journal, 2000

View PDFchevron_right

Simulation Based Bayesian Econometric Inference

Herman Van Dijk

2009

View PDFchevron_right

Distribution-free posterior analysis of econometric models

Efthymios Tsionas

Applied Stochastic Models in Business and Industry, 1999

View PDFchevron_right

Semiparametric Bayesian inference for regression models

Yodit Seifu

Canadian Journal of Statistics, 1999

View PDFchevron_right

Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models

Mahmoud Zarepour

Biometrika, 2000

View PDFchevron_right

Parallel hierarchical sampling: a practical multiple-chains sampler for Bayesian model selection

Fabio Rigat

2008

View PDFchevron_right

A Class of Adaptive EM-Based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation

Herman Van Dijk

SSRN Electronic Journal, 2000

View PDFchevron_right

Advances in Approximate Bayesian Computation and Trans-Dimensional Sampling Methodology

Gareth Peters

SSRN Electronic Journal, 2009

View PDFchevron_right

Adaptive Mixture of Student- t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit

Herman van Dijk

Journal of Statistical Software, 2009

View PDFchevron_right

Bayesian density estimation and model selection using nonparametric hierarchical mixtures

Alessandra Guglielmi

Computational Statistics & Data Analysis, 2010

View PDFchevron_right

MCMC Inference for a Model with Sampling Bias: An Illustration using SAGE data

William M Briggs

2007

View PDFchevron_right

Approximate Bayesian Computation by Modelling Summary Statistics in a Quasi-likelihood Framework

Stefano Cabras

Bayesian Analysis, 2015

View PDFchevron_right

Computational Bayesian Statistics

Carlos Daniel Paulino

2019

View PDFchevron_right

Just Another Gibbs Sampler (JAGS): Flexible Software for MCMC Implementation

James P Clifton, Patrice Cobb, Sarah Depaoli

View PDFchevron_right

On the calibration of Bayesian model choice criteria

Pantelis Vlachos

Journal of Statistical Planning and Inference, 2003

View PDFchevron_right