Multivalued fi�xed point theorems without strong compactness via a generalization of midpoint convexity (original) (raw)
Abstract
We investigate a generalization of midpoint convexity for multivalued maps, and derive fixed points theorems under this more general assumption without requiring any strong compactness condition. As an application we prove the existence of social equilibria for games with n players.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- H. Ansari, A. Idzik, J.C. Yao, Coincidence and fixed point theorems with applications, Topol. Meth. Nonlinear Anal., 15(2000), no. 1, 191-202.
- J.P. Aubin, A. Cellina, Differential Inclusions, Set-valued Maps and Viability Theory, Funda- mental Principle of Mathematical Sciences, 264, Springer-Verlag, Berlin, 1984.
- J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980.
- H.F. Bohnenblust, S. Karlin, On a theorem of Ville, in: Contributions to the Theory of Games, Vol. I, Princeton University Press, Princeton, N. J., 1950, pp. 155-160.
- T. Cardinali, F. Papalini, An extension of the concept of midpoint convexity for multifunctions (Italian), Riv. Mat. Univ. Parma, 15(1989), 119-131.
- F. Centrone, A. Martellotti, Proximinal subspaces of C(Q) of finite codimension, J. Approx. Theory, 101(1999), 78-91.
- F. Centrone, A. Martellotti, On the geometry of proximinal subspaces of codimension n of C(Q), Ricerche Mat., 53(2004), 29-56.
- M. Chermisi, A. Martellotti, Fixed point theorems for middle point linear operators in L 1 , Fixed Point Theory Appl., 2(2008), 103-112.
- N. Dunford, J.T. Schwartz, Linear Operators, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1988.
- K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., 38(1952), 121-126.
- I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc., 3(1952), 170-174.
- M.I. Kamenskii, V.V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, W. de Gruyter, Berlin, 2001.
- S. Kakutani, A generalization of Brower's fixed point theorem, Duke Math. J., 8(1941), 457-459.
- E. Klein, A.C. Thompson, Theory of Correspondence, Including Applications to Mathematical Economics, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, Inc., New York, 1984.
- K. Nikodem, On midpoint convex set-valued functions, Aequationes Math., 33(1987), 46-56.
- S. Park, Remarks on a social equilibrium existence theorem, Appl. Math. Lett., 11(1998), no. 5, 51-54.
- S. Simons, Two-function minimax theorems and variational inequalities for functions on com- pact and noncompact sets, with some comments on fixed-point theorems, Proc. Sympos. Pure Math., 45, Part 2, 1986, 377-393.
- I. Singer, Best approximation in normed linear spaces by elements of linear subspace, Springer- Verlag, New York-Berlin, 1970.