Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn 4 Ca Cluster from X-ray Spectroscopy (original) (raw)
2008, Inorganic Chemistry
Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn 4 Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. Xray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn 4 Ca cluster geometry to a set of three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Å-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-ray spectroscopy and crystallography are predominantly because of damage to the Mn 4 Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn 4 Ca catalytic center as it cycles through the five intermediate states known as the S i-states (i=0-4). The electronic structure of the Mn 4 Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formal oxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn 4 Ca cluster in the Sstates derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water splitting process.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.