Silver nanowire coated knitted wool fabrics for wearable electronic applications (original) (raw)
Related papers
Fabrication and properties of silver nanowires (AgNWs) functionalized fabric
2020
The tremendous clarification of Fabric-based solicitation structures is hugely suggested for clothing hardware. The nanowire affiliations in which have high conductivity, low resistivity, high adaptability similarly as straightforwardness are developing in the field of electronic completes. The material of knitted fabric surface quickly utilized for passing on a substitute sort of adaptable then extraordinary electro sensor contraptions. Nylon/PU surfaces with silver nanowire (AgNW) and polydimethylsiloxane (PDMS) direct conductive flicks have been proposed as a promising likelihood to supplant particular silver shade of electronic conductivity establishment. This sort of nanostructure has high capacitance and wide electrochemical shallow other than an ideal particle dispersing course in the composed nanowire structure which is wound up being a perfect anode material for world-class supercapacitors. These models of supercapacitors use the high adaptability mind-blowing processabilit...
Recent Trends in Wearable Electronic Textiles (e-Textiles): A Mini Review
2023
Wearable electronic textiles (e-textiles) have the ability to sense, respond, and adjust in multiple environmental stimuli, which can interact with the human brain's capability for cognition, reasoning, and activation. Moreover, they have the ability to generate and store energy, keep track of the wearer's health, and react to varying situations. Conductive polymers, metal-wrapped yarns, as well as, carbon nanotubes with silver, copper, and gold nanoparticles are used in a variety of yarn structures to design circuits, switches, and fabrics directly. Knitting, stitching, embroidery, and other integration techniques are used to combine electronic components and electrical interconnects to develop flexible electronic clothing and smart wearables. For this purpose, controlled sensors, actuators, conductive embroidered or printed fabric, planer yarn, data transfer devices, conductive inks, electromagnetic shielding, power supply, and other components are incorporated in etextiles design. Despite the progress made so far, wearable e-textiles still, lack the required performance and device features along with the issues related to complex fabrication techniques, end-of-life processing and sustainability. Hence, this review aims to discuss the recent developments, which address the future challenges concerning electronic (e-textiles).
Conducting materials as building blocks for electronic textiles
MRS Bulletin
To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention. Graphical abstract
Wearable electronics used in smart clothing for healthcare monitoring or personalized identification is a new and fast-growing research topic. The challenge is that the electronics has to be simultaneously highly stretchable, mechanically robust and water-washable, which is unreachable for traditional electronics or previously reported stretchable electronics. Herein we report the wearable electronics of sliver nanowire (Ag-NW)/poly(dimethylsiloxane) (PDMS) nanocomposite which can meet the above multiple requirements. The electronics of Ag-NW/PDMS nanocomposite films is successfully fabricated by an original pre-straining and post-embedding (PSPE) process. The composite film shows a very high conductivity of 1.52 × 10 4 S cm −1 and an excellent electrical stability with a small resistance fluctuation under a large stretching strain. Meanwhile, it shows a robust adhesion between the Ag-NWs and the PDMS substrate and can be directly machine-washed. These advantages make it a competitive candidate as wearable electronics for smart clothing applications.
Biosensors, 2018
The focus of this study is to design and integrate silver/silver chloride (Ag/AgCl) electronic textile (e-textile) electrodes into different textile substrates to evaluate their ability to monitor electrodermal activity (EDA). Ag/AgCl e-textiles were stitched into woven textiles of cotton, nylon, and polyester to function as EDA monitoring electrodes. EDA stimulus responses detected by dry e-textile electrodes at various locations on the hand were compared to the EDA signals collected by dry solid Ag/AgCl electrodes. 4-h EDA data with e-textile and clinically conventional rigid electrodes were compared in relation to skin surface temperature. The woven cotton textile substrate with e-textile electrodes (0.12 cm² surface area, 0.40 cm distance) was the optimal material to detect the EDA stimulus responses with the highest average Pearson correlation coefficient of 0.913 ± 0.041 when placed on the distal phalanx of the middle finger. In addition, differences with EDA waveforms recorde...
Design and development of wearable sensing nanomaterials for smart textiles
AIP Conference Proceedings, 2018
Recently, textiles have been entering in a next-generation of materials able to interact with their surroundings, through the incorporation of electronic devices with various functionalities for the human body, such as batteries, displays, sensors. In these aspects, smart textiles seem to be a highly suitable possibility, due to the advantages of textiles, nanotechnology and electronics. In fact, textiles usually show strength and hardness but also ductility and flexibility, so that they can be easily manipulated and adapted to a wide range of end-use requirements. Moreover, nanotechnology exhibits significantly improved physical and chemical functionalities and properties due to their nanoscaled size. Furthermore, miniaturized circuits result to be extremely low-power with respect to other commercial solutions and they are thus suitable for portable applications. These systems, comprising small physiological sensors, transmission modules and processing capabilities, can turn out useful for real-time health status monitoring. In this paper, the recently reported and significantly developed smart textiles are summarized, including their enhanced optoelectronic al and conductivity properties.
Smart Textiles and Nano-Technology: A General Overview
Smart textiles are fabrics that have been designed and manufactured to include technologies that provide the wearer with increased functionality. These textiles have numerous potential applications, such as the ability to communicate with other devices, conduct energy, transform into other materials and protect the wearer from environmental hazards. Research and development towards wearable textile-based personal systems allowing e.g. health monitoring, protection and safety, and healthy lifestyle gained strong interest during the last few years. Smart fabrics and interactive textiles’ activities include personal health management through integration, validation, and use of smart clothing and other networked mobile devices as well as projects targeting the full integration of sensors/ actuators, energy sources, processing and communication within the clothes to enable personal applications such as protection/safety, emergency and healthcare. This writing includes the origin and introduction of smart textile and integrated wearable electronics for sport wear, industrial purpose, automotive and entertainment applications, healthcare & safety, military, public sectors and new developments in smart textiles.
Conductive Textiles for Signal Sensing and Technical Applications
Signals
Conductive textiles have found notable applications as electrodes and sensors capable of detecting biosignals like the electrocardiogram (ECG), electrogastrogram (EGG), electroencephalogram (EEG), and electromyogram (EMG), etc; other applications include electromagnetic shielding, supercapacitors, and soft robotics. There are several classes of materials that impart conductivity, including polymers, metals, and non-metals. The most significant materials are Polypyrrole (PPy), Polyaniline (PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), carbon, and metallic nanoparticles. The processes of making conductive textiles include various deposition methods, polymerization, coating, and printing. The parameters, such as conductivity and electromagnetic shielding, are prerequisites that set the benchmark for the performance of conductive textile materials. This review paper focuses on the raw materials that are used for conductive textiles, various approaches that impart conductivity, the fa...
2014 ELEKTRO, 2014
Nowadays, health application has growing market potential. In this paper, an investigation of electro-conductive, parameters of blended silver coated polyamide yarn were measured. We focused on the several objectives important in electro-conductive yarns design and application into intelligent clothing. In detail, the effect of num bers of silver filaments, draft and twists, the effect of external heating source on electrical and temperature parameters were tested. Likewise, the possibilities of electro-conductive yarn as data bus were tested too.
International Joint Conference on Engineering, Science and Artificial Intelligence‐IJCESAI 2022
Conductive textiles play an important role in modern textile science as scientists are trying to integrate electronic devices into clothing for various purposes such as transmitting, tracking, and controlling movements. For this reason, researchers are trying to improve the conductivity of fabrics or yarns by using various materials and methods. In this study, the authors optimized conductive ink solution which is based on silver nanoparticles (AgNPs) known as electrically conductive which is applicable to traditional silk and wool textile products by printing and dyeing methods. With this application, the authors offered an innovative approach to the production of conductive textile surfaces. Several tests have been done to find out the change of conductivity and if those materials are applicable for our daily life usage. After applying AgNPs ink solution, the conductivity of silk (34.78 S/cm) is much higher than wool (25.28 S/cm) but after the color-fastness to rubbing test, wool's (2.12 S/cm) conductivity is much higher than silk (1.01 S/cm). On the other hand, after the wash fastness test, the conductivity of wool decreased (5.43 S/cm). So, the authors have found that the conductive wool yarn is much more stable than silk yarn or fabric for daily life application