Advanced Islanded-Mode Control of Microgrids (original) (raw)
Related papers
Transition From Islanded to Grid-Connected Mode of Microgrids With Voltage-Based Droop Control
Microgrids are able to provide a coordinated integration of the increasing share of distributed generation (DG) units in the network. The primary control of the DG units is generally performed by droop-based control algorithms that avoid communication. The voltage-based droop (VBD) control is developed for islanded low-voltage microgrids with a high share of renewable energy sources. With VBD control, both dispatchable and less-dispatchable units will contribute in the power sharing and balancing. The priority for power changes is automatically set dependent on the terminal voltages. In this way, the renewables change their output power in more extreme voltage conditions compared to the dispatchable units, hence, only when necessary for the reliability of the network. This facilitates the integration of renewable units and improves the reliability of the network. This paper focusses on modifying the VBD control strategy to enable a smooth transition between the islanded and the grid-connected mode of the microgrid. The VBD control can operate in both modes. Therefore, for islanding, no specific measures are required. To reconnect the microgrid to the utility network, the modified VBD control synchronizes the voltage of a specified DG unit with the utility voltage. It is shown that this synchronization procedure significantly limits the switching transient and enables a smooth mode transfer.
A Control Strategy for Islanded Microgrids With DC-Link Voltage Control
IEEE Transactions on Power Delivery, 2011
New opportunities for optimally integrating the increasing number of distributed-generation (DG) units in the power system rise with the introduction of the microgrid. Most DG units are connected to the microgrid via a power-electronic inverter with dc link. Therefore, new control methods for these inverters need to be developed in order to exploit the DG units as effectively as possible in case of an islanded microgrid. In the literature, most control strategies are based on the conventional transmission grid control or depend on a communication infrastructure. In this paper, on the other hand, an alternative control strategy is proposed based on the specific characteristics of islanded low-voltage microgrids. The microgrid power is balanced by using a control strategy that modifies the set value of the rms microgrid voltage at the inverter ac side as a function of the dc-link voltage. In case a certain voltage, which is determined by a constant-power band, is surpassed, this control strategy is combined with-droop control. This droop controller changes the output power of the DG unit and its possible storage devices as a function of the grid voltage. In this way, voltage-limit violation is avoided. The constant-power band depends on the characteristics of the generator to avoid frequent changes of the power of certain DG units. In this paper, it is concluded that the new control method shows good results in power sharing, transient issues, and stability. This is achieved without interunit communication, which is beneficial concerning reliability issues, and an optimized integration of the renewable energy sources in the microgrid is obtained.
IEEE Transactions on Power Delivery, 2012
For islanded microgrids, droop-based control methods are often used to achieve a reliable energy supply. However, in case of resistive microgrids, these control strategies can be rather different to what conventional grid control is accustomed to. Therefore in this paper, the theoretical analogy between conventional grid control by means of synchronous generators (SGs) and the control of converter-interfaced distributed generation (CIDG) units in microgrids is studied. The conventional grid control is based on the frequency as a global parameter showing differences between mechanical power and ac power. The SGs act on changes of frequency through their P /f droop controller, without inter-unit communication. For CIDG units, a difference between dc-side power and ac-side power is visible in the dc-link voltage of each unit. Opposed to grid frequency, this is not a global parameter. Thus, in order to make a theoretical analogy, a global measure of the dc-link voltages is required. A control strategy based on this global voltage is presented and the analogy with the conventional grid control is studied, with the emphasis on the need for interunit communication to achieve this analogy. A known control strategy in resistive microgrids, called the voltage-based droop control for CIDG units, approximates this analogy closely, but avoids inter-unit communication. Therefore, this control strategy is straightforward for implementation as it is close to what control engineers are used to. Also, it has some specific advantages for the integration of renewables in the network.
Voltage and frequency of microgrids (MGs) are strongly impressionable from the active and reactive load fluctuations. Often, there are several voltage source inverters (VSIs) based distributed generations (DGs) with a specific local droop characteristic for each DG in a MG. A load change in a MG may lead to imbalance between generation and consumption and it changes the output voltage and frequency of the VSIs according to the droop characteristics. If the load change is adequately large, the DGs may be unable to stabilize the MG. In the present paper, following a brief survey on the conventional voltage/frequency droop control, a generalized droop control (GDC) scheme for a wide range of load change scenarios is developed. Then to remove its dependency to the line parameters and to propose a model-free based GDC, a new framework based on adaptive neuro-fuzzy inference system (ANFIS) is developed. It is shown that the proposed intelligent control structure carefully tracks the GDC dynamic behavior, and exhibits high performance and desirable response for different load change scenarios. It is also shown that the ANFIS controller can be effectively used instead of the GDC. The proposed methodology is examined on several MG test systems.
Microgrids have been defined as an efficient and practical concept to cover flaws in traditional power system related to system expansion and renewable energy utilization. By increasing demand energy, the need to generate more electric power is raised. However, the distance between generation centers and consumption centers causes more energy loss in power system and power system expansion is considered costly and to some extent infeasible. In addition, nowadays using renewable energies such as wind energy is inevitable, as a result using power electronic mediums is necessary. Microgrids are mostly preferable because of the ability to perform in islanded mode. In order to have stable-islanded Microgrid, electric loads inside the network should be shared on Voltage Source Converters respect to their nominal capacity. Droop control has been known as a method to share loads in decentralized way, although it has shortcomings. In this paper by introducing novel method named Frequency Tracking and applying that on droop control system, electric loads inside an islanded Microgrid are shared on generation units properly with fast and acceptable dynamics and droop control system is modified. Simulation results in PSCAD are confirmation of proposed system to have stable islanded Microgrid.
Journal of Operation and Automation in Power Engineering, 2023
The widespread adoption of microgrids in electric power systems has brought numerous advantages such as decentralized control, reliability, cost-effectiveness, and environmental benefits. However, one of the most critical challenges faced by islanded microgrids is ensuring frequency and voltage stability. This paper addresses these stability issues that arise when microgrids operate independently, disconnected from the main network through the point of common coupling (PCC). These microgrids rely on renewable resources like photovoltaic (PV) systems, wind turbines, and energy storage systems, which often require DC to AC conversion through inverters to simulate synchronous generators. To overcome the frequency and voltage stability challenges, this research utilizes the droop control technique to regulate the active and reactive power of distribution generators (DGs). The droop control technique is implemented and simulated using MATLAB software, specifically employing a multi-DC bus-based inverter. The simulation results demonstrate that the DGs successfully supply the required total power to meet load demands while maintaining frequency and voltage stability. Through the droop control technique, active and reactive power sharing is achieved, ensuring stability at nominal values. The DGs can effectively maintain a constant power profile at desired values, even in the presence of static and dynamic loads.
Influence of power control strategies on the voltage profile in an islanded microgrid
14th International Conference on Harmonics and Quality of Power (ICHQP), 2010
The emergence of large amounts of distributed energy resources (DER) poses new challenges for the active participation of those units in the control of the grid. In this context, a recent development is the microgrid, which presents a coordinated approach for integrating the DER in the electrical grid. Microgrids are able to operate either connected to the distribution grid or in islanded mode. In this paper, the influence of different power control strategies of DER is studied with respect to the voltage profile in an islanded microgrid. A description of the control strategies is presented, as well as some simulation results for a basic microgrid.
An Overview on Microgrid Control Strategies
—In response to the ever increasing energy demand, integrating distributed energy resource-based microgrid will be the most promising power system improvement in the near future. Microgrid system implementation provides significant advantages for both electric utility provider and end customer user. This paper performs a comprehensive literature review on the current key issues on control strategies of microgrid islanded mode operation. Brief descriptions are provided for typical microgrid control methods, PQ control, droop control, voltage/frequency control, and current control, which are associated with microgrid mode of operation. This review also covers microgrid control issues such as islanded mode, stability, and unbalanced voltages to provide adequate power quality. In addition, this paper discusses the challenges of microgrid islanded mode issues, such as load sharing, distributed generation losses, and non-linear /unbalanced load. Finally, research conclusions of the important microgrid control requirements for future development are also described.
Controlling Voltage and Frequency of a Power Network with Microgrid Using Droop Method
Global Journal of Research In Engineering, 2011
Microgrids (MG) are new concept of electric power networks consisting of distributed generation (DG), renewable energy resources and sensitive loads. The goal of microgrid operation is to provide reliable and high-quality electric power regardless of faults or abnormal operating conditions. Many control methods have been employed to regulate the output power of DGs used in MGs. This paper presents a control scheme for DGs of a power system, especially with voltage source inverter (VSI) interface, for both grid connected and islanded modes. A comprehensive study has been performed through PSCAD simulations of the inverter-fed MG behavior under both islanding and connected operation for different load conditions. The simulation results prove the droop method efficiency in controlling the voltage and frequency of the inverter output which is connected to the loads.
A Survey on Microgrid Control Techniques in Islanded Mode
Journal of Electrical and Computer Engineering
Traditional power networks with generation in upstream and consumption in the downstream were controlled with centralized controls like SCADA. However, in order to facilitate the penetration of distributed generation, the concept of microgrid was popularized. A microgrid can operate both in grid-connected and in islanded modes. One of the challenges in the microgrid environment is to provide both voltage control and maintain the system frequency while ensuring the stability of the network. This paper is a literature survey focused on different microgrid control techniques with different levels of communication especially in islanded operation.